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Abstract— This paper deals with the problem of 
modeling and control to the distributed collector 
field of a solar power plant at the solar platform of 
the Almeria. The main characteristic of this type of 
process is the primary source of energy (solar 
radiation) cannot be manipulated, In addition to the 
intensity of solar radiation depends on the variations 
of daily and seasonal cycle as cloud and moisture. 
The ability of generalized predictive control strategy, 
to drive the process output more closely to the 
reference trajectory in the presence of constraints 
on the input and output signals, and to anticipate 
and to eliminate the effects of both feed forward and 
feedback disturbances .It is very interesting to 
investigate its utility in a solar power plant in order 
to maintain temperature oil output more nearer to 
the reference temperature 
 
Keywords- renewable energy, distributed solar 
collector field,  predictive control, subspace 
identification. 

I.  INTRODUCTION  
Today solar energy represents the best source for the 
energy supply of the future. This work studies the fields 
solar collector distributes of the solar platform of the 
Almeria, situated in the south of Spain. One of the main 
features of this type of proceed solar energizing is that 
the source primary of energy (solar radiation) cannot be 
manipulated. In addition, the intensity of the solar 
radiation depends on the variations of the daily and 
seasonal cycle, as the clouds, the atmospheric humidity, 
and the turbidity of air. The main objective of the control 
is to maintain the temperature of oil in the exit more 
close to the order, in spite of the changes of the 
operative conditions, while manipulating the debit of oil. 
For it one proposes to use the strategy of a predictive 
control strategy based on state space models identified 
from actual data. 

II. DESCRIPTION OF SYSTEM 
The system studied here is the ACUREX distributed 
solar collector field. The PSA plant (Plataforma Solar de 
Almeria) based on a parabolic-trough technology, and 

located on the desert of Tabernas in the south of Spain. 
The field consists of 480 distributed solar collectors 
arranged in 20 rows, which form10 parallel loops.  Every 
collector is composed of a parabolic surface that 
concentrates radiation solar direct toward the conduct 
placed in a parabolic focal line Fig.1. Each collector uses 
parabolic mirrors to concentrate the radiation in a 
receiver tube. Synthetic oil is pumped through the 
receiver tube and picks up the heat transferred through 
the tube walls. The cold inlet oil (at temperature Tin) is 
extracted from the bottom of a storage tank and is 
passed through the field using a pump at the field inlet. 
Then, the heated fluid is introduced into the storage tank 
to be used for electrical energy generation or for feeding 
a heat exchanger of a desalination plant.  
 

 
 

Fig.1.The Buckles, The Conducts And The Vats Of The Solar Field. 

 
Fig .2. A Schematic Diagram Of The Acurex Solar Collector Field 
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Solar field modeling 
 

    The dynamics of the solar field to distributed collectors 
are described by a set of non linear equations from the 
balances of mass and energy follow [11]: 
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Where  𝜌  is density of oil  (kg/𝑚3), 𝑐 is specific heat of 

oil J/kg K), 𝐴 is section of the tube (𝑚3 ), 

𝑇 is temperature (℃), 𝐼  is solar radiation (W/𝑚2𝐾), 𝜂0 
optic efficiency, 𝐷 is width outside of the tube (m), ℎ𝐿 is 

coefficient of global thermal loss,  𝐺 is outside diameter 

of the tube  (m), 𝑇𝑎  is temperature of the environment  
( ℃ ), L  is internal diameter of the tube (m), ℎ𝑇   is 

coefficient transmission metal-fluid  (W / 𝑚2𝐾) and 𝑉 is 
rate of the volumetric flux of oil . 
 

III. SUBSPACE IDENTIFICATION METHOD 

  
The subspace identification method  permit to obtain a 
state space model of unknown linear systems from the 
given Input /output data. This method is based on the 
following steps: 

. Use an orthogonal or oblique projection of the row      
  spaces of certain block Hankel matrices of data into  
  the row spaces  of other block Hankel matrices; 
. Apply a singular value decomposition (SVD) to  
  determine the order, the observability matrix and /or  
   the state sequence.  
. Resolve a least squares problem to obtain a state  
  space model.  
 

Discrete time, linear, time-invariant, state space models 
can be described by the following set of difference 
equations [5],[7]:   
 

                           {
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘
                         (3) 

 
with 

                   E[(
𝑤𝑝
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𝑄   𝑆

𝑆𝑇𝑅
) 𝛿𝑝𝑞≥0               Eq. (4) 

 

where x, u, and y are respectively, the process states, 
inputs and outputs, , while A is the system (state 
transition) matrix, B is the input matrix, C is the output 
matrix and D is the direct input to output matrix. w is 
called the process noise and v is called the 
measurement noise. The matrices Q, S and R are the 

covariance matrices of the noise sequences 𝑤 and  𝑣. E 

denotes the expected value operator and  𝛿𝑝𝑞  the 

Kronecker delta.  
 
The measured data are arranged in the Hankel form. 

matrices  𝑌𝑓,𝑌𝑝,𝑈𝑓 and 𝑈𝑝where the subscripts "f" and  "p" 

denote the future and past, respectively. The Hankel 
matrices can be arranged to form a linear regression 
equation: 

                                 𝑌𝑓=[𝑅𝑈𝑝
𝑅𝑌𝑝

𝑅𝑈𝑓] [

𝑈𝑝

𝑌𝑃

𝑈𝑓

]               Eq.(5) 

 

This can be solved in a least squares sense. By 

excluding the linear combination of the 𝑈𝑓, the matrix of 

predicted outputs can be written as: 
 

                                              𝑌̂𝑓=[𝑅𝑈  𝑝
𝑅𝑌𝑝

][
𝑈𝑝

𝑌𝑝
]                 Eq.(6) 

 

It can be shown [7] that the input-state-output relations 

can be expressed as: 

                                            Yf =  𝑋𝑓+𝑅𝑈𝑓
𝑈𝑓+𝐸𝑓               Eq. (7)                                            

 

Where Г is the extended observability matrix, 𝑋𝑓   is a 

matrix of state sequences stored as row vectors, and 𝐸𝑓 

is a noise term. By excluding 𝑈𝑓 , the matrix of predicted 

outputs can be defined as: 

                                             


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Where 𝑋̂𝑓 represent the predicted states, which are up to 

now known. By performing the singular value 
decomposition (SVD)  of (6), deleting small singular 
values, and comparing to (8) gives 
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2        𝑋̂𝑓= Г+𝑌̂𝑓                Eq. . (10)                                                                                                                                                 

 

Where  +  denotes the Moore-Penrose pseudoinverse. 
Once the matrix of states is given by( 9), the state space 
model matrices can be found by solving a simple set of 
overdetermined equations in a least squares sense: 
 
 

                                   [
𝑋̂𝑘+1

𝑌𝑘
]=   [

𝐴 𝐵
𝑐 𝐷

]  [
𝑋̂𝑘

𝑈𝑘
] +𝑣𝑘           Eq. (11) 

 

With 𝑣𝑘 as residual matrix. In addition, the Kalman gain k 

can then, if desired, be computed from  𝐴 ,  𝑐 and the 
covariance matrix of  𝑣𝑘 . 

 



V.   GENERALIZED PREDICTIVE CONTROL 

 

Consider the following locally linearized controlled 
autoregressive and moving average (CARIMA) time 
discrete model  [1], [3],[7],[13]: 
 

           𝐴(𝑞−1)𝑦(𝑘) = 𝐵(𝑞−1)𝑢(𝑘 − 1) + 𝑒(𝑘)/∆        Eq.(12) 

 

Where u(t), y(t) and e(t) are respectively the control 
input, the controlled variable, and uncorrelated random 

sequence at time k; q
1−
 is the backward shift operator, 

  is the differencing operator ( q
1

1
−

−= ); and 

)(),(
11

qBqA
−−

 are polynomials obtained by 

instantaneous linearization method: 
 

𝐴(𝑞−1) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−1+. . +𝑎𝑛𝐴𝑞−𝑛𝐴 

     𝐵(𝑞−1) = 𝑏0 + 𝑏1𝑞−1 + 𝑏2𝑞−2+. . +𝑎𝑛𝐵𝑞−𝑛𝐵       Eq. (13) 

The objective of the generalized predictive control 
strategy is to minimize a cost function based on error 
between the predicted output of the process and the 
reference trajectory. The cost function is minimized in 
order to obtain the optimal control input that is applied to 
the non-linear plant. The cost function has the following 
quadratic form: 
 

𝐽 = ∑ [𝑦̂(𝑘 + 𝑗) − 𝑟(𝑘 + 𝑗)]2 + 𝜆 ∑ ∆𝑢2(𝑘 + 𝑗 − 1)

𝑁𝑢

𝑖=1

𝑁2

𝑖=𝑁1

        𝐸𝑞. (14) 

 

N1   : the minimum prediction horizon; 

 N 2   : the maximum prediction horizon; 

j     : the order of the predictor; 

 r     : the reference trajectory; 
 λ    : weight factor; 
     : the differentiation operator; 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Generalized Predictive Control Strategy Principle 
 

Thus, the goal is to drive the future outputs 𝑦(𝑘 + 𝑗) 
close to  𝑟(𝑘 + 𝑗)  for 𝑁1 =1 and 𝑁2 = 𝑁  the prediction 
vector:   

𝑌̂ = [𝑦̂(𝑘 + 1), 𝑦̂(𝑘 + 2), … , 𝑦̂(𝑘 + 𝑁)]𝑇  is given by   

                       𝑌̂ = 𝐺∆𝑈 + 𝐹                               Eq.(15) 

 

Where ∆𝑈 = [∆𝑈(𝑘), ∆𝑈(𝑘 + 1), … , ∆𝑈(𝑘 + 𝑁 − 1)]𝑇  and 

𝐹 = [𝑓(𝑘 + 1), 𝑓(𝑘 + 2), … , 𝑓(𝑘 + 𝑁)]𝑇   are the 
predictions of the output by assuming that future control 
increments are all zero. Then, the control law is given 
by: 

               ∆𝑈 = ( 𝐺𝑇𝐺 + 𝜆𝐼)−1 𝐺𝑇(𝑅 − 𝐹 )                  Eq.(16) 

Where 𝑅 = [𝑟(𝑘 + 1), 𝑟(𝑘 + 2), … , 𝑟(𝑘 + 𝑁)]𝑇  if after a 
certain horizon N u , control horizon, the increments are 

assumed to be zero. 
 

∆𝑢(𝑘 + 𝑗 − 1) = 0 ,     1 ≤ 𝑁𝑢 < 𝑗 ≤ 𝑁2 
 
 
The control law becomes: 
 

              ∆𝑈 = ( 𝐺1
𝑇𝐺1 + 𝜆𝐼)−1 𝐺1

𝑇(𝑅 − 𝐹)             Eq.(17) 
 

𝐺1 = [

𝑔0 0 … . 0 … … 0
𝑔1 𝑔0 … . 0 … … 0
… . … . … . 𝑔𝑁−1 … . … . 0

𝑔𝑁−1 𝑔𝑁−2 … … . … . 𝑔𝑁−𝑁𝑢

]                                                                                                

 

And the matrix  )( 11 IGG
T +  is  

 
𝑁𝑢  ∗   𝑁𝑢   

 

The coefficients of the matrix G1  can be obtained from 

polynomials G j  given by : 

 
and 𝐸𝑗 results from the recursive solution of the 

Diophantine equation: 
 
 

                  1 = 𝐸𝑗(𝑞−1)𝐴(𝑞)−1∆ + 𝑞−𝑗𝐹𝑗(𝑞−1)        Eq. (19)                                                                                            

 
deg (𝐸𝑗) =j-1,

 
deg (𝐹𝑗)=n 

 
 
As the cost function used in GPC is quadratic, then 
quadratic programming (QP) techniques are well suited 
for solving the problem of constraints on the control 
signal, the output signal or on the increments of the 
control signal.  

                

N2 

NU 
Reference trajectory W 

Control signal U 

Time K-1  K K+N

u 
K+N                     

     2 

K+1 ……

.. 

………………………

…….. 

Past output y 

Predicted output Y 



               UU U maxmin                                                EQ.(20) 

               YY Y maxmin                                   Eq.(21) 

           UU U   maxmin                                        EQ. (22) 

 

VI.  RESULTS AND DISCUSSIONS 

 

First time, the subspace identification method  is used to 
find  the state space model of  the Acurex Solar 
Collectors Field of the Plataforma Solar de Almería 
(PSA) directly from the data of input corresponding to [𝑞𝑠   

,𝑇𝑖𝑛,𝐼𝑟𝑟] and of output corresponding to [𝑇𝑜𝑢𝑡]. The data 
and the model output are so close to each other 
(Fig.4,5,6,7). In the second time, predictive control 
strategy is applied to this type of system. The results 
show that the predictive controller is able to drive the 
output close to the reference trajectory by selecting the 
best choice of the parameters values like prediction 
horizon, control horizon and the weight factor in spite of 
the variations of the input temperature and the solar 
irradiation (Fig.8, 9). 
 
 
 
The matrix of the state space model are: 
 
 
 

𝐴 = [

0.9282
−0.1861
0.0262

0.0842
0.9152

−0.0774
−0.1052 0.1386

       

0.1360
0.1335
0.6776

0.1402
−0.0043
−0.7024

0.4674 0.4537

 ] 

 
 
 

 𝐵 = [

0.0703
0.0401

−0.2853

0.0060
0.0072

−0.0159
−0.0576 0.0127

    

0.0171
0.0094

−0.0618
−0.0080

   ] 

 
 
                                                                                

 𝐶 = [131,7858 −40,9384 29,8142 −3,6725]
 

                   
 
 

 𝐷 = [0 0 0]

 

 
 

 
 

Fig.4.Data Sequence of Fluid Flow 
 
 

 
Fig.5.Data Sequence of Solar Radiation 

 
 

 
Fig.6.Data Sequence of Inlet Temperature 

 



 

Fig.7. Data Sequences and Model output (Outlet 
Temperature) 

 
 

   
Fig.8. Control Signals 

 

 
Fig.9. Setpoint, Output Temperature. 

 
 

VII.  CONCLUSION 

In this work, we have used the identification subspace 
method for modeling Acurex Solar Collectors Field of the 
Plataforma Solar de Almería and the predictive control 
strategy to insure the following of the reference 
trajectory. The obtained results are satisfactory and we 
plan to improve them by the use of other techniques of 
modeling and control. 
 

REFERENCES 

 
[1]    K. S. Holkar, K. K. Wagh, “ An overview of model 
predictive control”,   International Journal of Control and 
Automation Vol. 3, 2010. 
[2]   C.N.Stoica, “Robustification de lois de Commande 
Prédictive Multivariables ”, P.H.D. thesis, 2008 . 
[3]    E.F. Camacho, C.Bordons, “Model predictive 
control” , Springer  publication, 2007,  London. 
[4]    A.A. Jalali, V.Nadimi, “A Survey on robust model 
predictive control from 999-
2006”,InternationalConference on Computational 
Intelligence for  Modeling Control and Automation ,and 
International Conference on Intelligent Agents, Web 
Technologies and Internet Commerce,  IEEE Computer 
Society, 2006. 
[5]    K.M.PEKPE, “Identification par technique sous-
espace application au diagnostic ”, P.h.d. thesist de 
l’Institut national polytechnique de Lorraine,2004. 
[6 ]   P.Gil ;J.Henriques ,P.Carvalho,H .Duarte-Ramos 
and  A.Dourado, “Adaptativen neural  model based 
predictive  control with  steady offset compensation for a 
distributed solar collector field” , IEEE, Nanging China, 
2003. 
[7]   V.Overschee, P. and De Moor, “Subspace 
identification for linear  systems”, 
Theory,implementation, Applications. Kluwer  
Academic,1996. 
[8]    J. Duan, M. Grimble, “Design of long-range 
predictive control  Algorithms for industrial applications”, 
IEE Colloquium on industrial applications of     model 
based predictive control, 1991. 
[9]    D.W.Clarke, R. Scattolini, “Constrained receding-
horizon predictive control”, IEE Proceedings-D, Vol.138 
(Issue 4), 1991.  
[10]  C. E. Garcia, D. M. Prett, M.Morari, “Model 
predictive control: Theory  and practice a survey”, 
Automatica, Vol. 25, (Issue 3),1998. 
[11]  E. F. Camacho, F. R. Rubio, and J . Gutierrez), 
“Modeling and  simulation of a solar power plant with a 
distributed collectors system”, Power systems, modeling, 
and control applications, Brussels, Belgium,1988. 
[12 ]  D.W.Clarke, “Generalized predictive control: A 
robust self-tuning algorithm”, American Control 
Conference, 1987. 
[13]  D.W.Clarke, C.Mohtadi,  and P.S.Tuffs(1987), 
“Generalized predictive control. Part I. The Basic 
Algorithm”. Automatica,23(2), 137–148,1987. 
[14]  M. G.Carrillo,R.D.Keyser,C. Ionescu,“Application of 
A Smith nonlinear predctive controoller a solar power 
plant” Department  of Electrical energy,Systems and 
Automation ,Ghent University Technologie park           
913,B9052 Gent ,Belgium, 2007.  
 
 


