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      Theoretical and experimental studies of an ice storage system encapsulated with phase change 

materials in which in the hot period energy is absorbed and in the cold period released, are discussed. An 

algorithm to solve the coupled partial differential equations for heat transfer and storage in the phase 

change regenerator on the bed scale and on the phase change material scale is presented. The bed is 

simulated via the tanks in series approximation. The phase change material scale is solved by Orthogonal 

Collocation applied to the equations transformed to immobilize the melt/solid interface and eliminate the 

effect of spherical geometry. Parametric studies show the effects of specific dimensionless group. A phase 

change material consisting of water in spherical support is used in a lab scale to verify the mathematical 

model. Experiments with heated or cooled air passing through the system are described. The measured 

outlet temperature results are compared qualitatively with the model predictions. 

 

INTRODUCTION 

     Fixed bed thermal regenerators are used to recover, store, and reuse waste energy. Large regenerators 

have usage in the steel, aluminum, glass making furnaces and waste heat recovery systems particularly for 

the stack gases [1]. Such systems are cycled between the heat storing and heat releasing modes. First, a 

stream containing waste heat (e.g., exhaust gas from a boiler or furnace) is passed through the bed where 

the heat is transferred to the ceramic packing. Later a cold stream (e.g., the fresh air to the boiler or 

furnace burners) is passed through the hot bed to pick up the heat stored in the matrix. Conventional 

regenerators utilize the sensible heat of the packing to absorb and release energy. 

     It has long been recognized that compared to the sensible heat storage, larger amounts of energy per 

unit volume can be stored by utilizing the latent heat of a phase change. For example, the solid to liquid 

phase change of Glauber salt which was proposed to store solar energy for domestic heating. In this case, 

during the daytime hours the incident sunlight shining into the building is stored as the salt melts. Then at 

nighttime, as the salt solidified, the released energy can heat the building. Recently, latent heat “cold 

storage” has been proposed as a means of leveling air conditioning loads in hot climates. One scheme, 

which is being commercialized, uses latent heat to store waste heat from an automobile engine so that it 

may be used to preheat the engine in cold climates following being off for more than several hours. This 

minimizes the period of time the engine is warming, a period of time when fuel efficiency is low and 

tailpipe hydrocarbon emissions are the highest. A large-scale latent heat storage has been proposed for 

reclaiming high temperature waste energy in the firing of bricks. It is evident that in a typical packed bed 

regenerator, greater amounts of energy can be stored if the packing were replaced with a phase change 

materials and stores energy as latent heat. In this case, as some means of containing or supporting the 

Phase Change Material (PCM) must be provided since the material can flow when it is in the liquid state.  

     Two approaches are commonly used: a supported PCM and an encapsulated PCM. With a supported 

PCM, the liquid phase compound is absorbed in an inert porous structure. With an encapsulated PCM, the 

liquid is contained in a shell of inert material. A regenerator, which utilizes phase change heat storage, is 

referred to as a Phase Change Regenerator (PCR). 
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Models for the PCR are complex, involving the solution of the classical Stefan problem for phase change 

heat storage on the scale of the PCM, coupled with the heat balance equation for the scale of the PCR 

packed bed. Studies on the phase change heat storage have been conducted in many different areas.      

Armilli and Graves [2] present calculations for a PCR filled with spherical PCM. A supported PCM is 

modeled, composed of a porous matrix filled with a phase change alloy. The model presented accounts for 

the convection, heat accumulation in the fluid, heat losses through the wall of the PCR, and energy storage 

by PCM. The model also assumes that there is no radial temperature gradient, yet a wall heat loss term is 

included. The coupled equations for the Stefan problem (PCM scale) and the bed scale were solved by an 

iterative finite difference scheme. Results were reported for only a single case: heat recovery from 

combustion gases. No parametric studies were investigated. 

     Chen and Yue [3] have investigated cold storage in a PCR, which is packed with porous spheres 

holding water. They developed a lumped parameter model, which assumes that the PCR is in a pseudo 

steady state, and changes as ice is formed. The PCR is depicted as a single, well-stirred tank; dispersion in 

the bed and heat conduction within the PCM was neglected. Experiments were performed using a 100 mm 

diameter by 260 mm long bed packed with 34 mm OD spheres. The film heat transfer coefficient was 

estimated by fitting the model to the experimental data. 

     The model compared favorably with the experimental data only with latent heat storage and badly 

under predicted the fluid outlet temperature when storage was by sensible heat only. Chen and Yue [3] 

argue that the reason for this discrepancy is that their model assumes a constant film heat transfer 

coefficient, when in fact the film coefficient is not constant. In their paper, Chen and Yue [3] showed that a 

plot of temperature distribution at different positions within their experimental PCR in which the 

dimensionless temperature changes by a factor of five between the inlet and outlet of the bed. Since the 

model is force fitted to match the outlet temperature by estimating a value of the heat transfer coefficient, 

at times when the gradient within the bed is constant (during latent heat storage) the lumped parameter 

model predicts the data trend. When the gradient within the bed changes (as during sensible heat storage) 

the model cannot predict the data trend. 

     The aim of the present work is to develop a versatile mathematical model for the simulation of a 

laboratory scale phase change regenerator system and to study the parametric effects on the thermal 

performance of the system. 

 

PCR MODEL 

     The information obtainable from a complete and acceptable PCR model consists of (1) the thermal 

efficiency; (2) the temperature-time history of outlet fluid; (3) the temperature profile through the bed; (4) 

the temperature profile within an individual PCM at a selected location; and (5) position of the solid-liquid 

interface within a PCM. The model equations presented below are based upon the following assumptions; 

no radial temperature gradients on the bed scale; no radiation heat transfer on either scale; constant 

physical and thermal properties for the liquid and solid states; the PCM is in a spherical shape, supported 

one and in a single phase at the start of the operation. 

      A logical discretization scheme for the axial dispersion equation is to invoke the cells-in-series 

approximation, which is shown in [4] to be equivalent to a central finite difference approximation of the 

axial dispersion equation. The bed is modeled as a collection of N well-mixed tanks (cells) in series. The 

dimensionless temperature is defined as; 
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The symbols hit , and  cit ,  represent the inlet fluid temperatures during the heating (energy storing) and 

cooling (energy releasing) periods respectively. The accumulation parameter ψ  (ratio of the sensible heat 

of the fluid in the bed to that of the packing) is defined as 
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Where, ε  is the bed porosity, fρ and pρ are the densities of the fluid and the packing, respectively, 

fC and pC are the heat capacities of the fluid and packing, respectively. 

The Stefan number (ratio of PCM sensible heat to latent heat) is obtained from; 
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Where, PCMC  is the heat capacity of the PCM, and λ  is the latent heat of the pure phase change 

compound. 

The bed scale equation in non dimensional form will be rearranged as; 

);()(
1,,1,

,

PCMnfnfnf

nf
TTStTTN

T
−−−=

∂

∂
−

ϑ
ψ  Nn ≤≤1               (4) 

Where 1PCMT  represents the temperature at the outer surface of the PCM in the mixing cell defined as 
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With, τ  is the actual time, L is the length of the bed, and fv  is the fluid superficial velocity. The Stanton 

number for heat transfer (ratio of film convection to fluid convection in the bed) is defined as: 
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Where, h and PCMR  are the convective heat transfer coefficient and PCM radius respectively. The 

boundary condition at the inlet is:  
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The classical Stefan problem which, is solved on the PCM scale for this situation is given by two PDEs of 

the form: 
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Where, ϕ  is the dimensionless, radial coordinate in the PCM sphere (
PCMR

r
=ϕ ) ranging from 0 at the 

center to 1 at the outer radius, yT  is the y-phase temperature and Bi  is the Biot number for heat transfer, 

defined as 
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Where, PCMk  is the effective thermal conductivity of the PCM. The terms iyx ,,ω  and oyx ,,ω  are the 

endpoints, where the subscript x is replaced by c in a cooling period and h in a heating period, the subscript 

y is replaced by s for solid phase and l for liquid phase, and the subscript i and o represent inner and outer 

endpoints of the domain. Values of ω  are defined as; 
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Where, dδ  is the solid-liquid interface position within the PCM. The boundary conditions (BCs) for two 

PDEs are: 
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Where mT  is the PCM melting point defined as 
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The position dδ  is given by an energy balance at the solid-liquid interface: 
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     We next consider how the Stefan problem should be discretized. Due to the spherical geometry, the 

solution to the Stefan problem is nonlinear in position as dδ  approaches the center of the PCM. 

Indeed, analytical solution to the classical problems involving this geometry is often solved by transforming 

the Stefan nonlinear problem into one of the linear flow [5] (i.e., into slab coordinates). To tackle the 

problem, a new transformed parameter in the shell surrounding the core is defined as: 

sh
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Where the subscript sh corresponds to the shell phase condition (liquid and solid during the heating and 

cooling periods respectively). Note that the core phase need not be transformed since the boundary 

conditions force the solution to be smooth and easily approximated by low-order polynomials. 

We define the immobilized coordinate system for the core and shell phases respectively coζ and shζ  each of 

which span [0, 1] by: 
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     The PDEs of the Stefan problem are converted into a series of ODEs by discretization of the spatial 

coordinates. Orthogonal collocation is used as discussed by [6] and [7].  

The complete model is thus solved numerically by integrating in time for each of the N stages in the 

regenerator the ODEs, as well as by associated boundary and initial conditions. Each stage is solved 

independently, starting from 0=ϑ  to the ending time. Then, the next cell is solved, thereby marching cell 

by cell along the regenerator. The output from a cell is stored in an array and cubic sp-lines are used to 

approximate the temperature history so that it could be used as input for the next mixing cell. 

 

SIMULATION RESULTS 

     The effects of the parameters such as ψ,,,, BiStSteTm  were investigated in this study. Figure 1 shows 

the effect of mT  on the fluid temperature history for the heating and cooling periods. For low values of mT , 

in the heating period, the breakthrough time is shortened. As the PCR becomes more non ideal, the length 

of the constant temperature zone is also reduced. However, there always is some zone, albeit small in 

duration (length), where the response moves through a temperature mT  .When this zone becomes 

sufficiently small, it represents an inflection point in the response. Of course, when this happens, the PCR 

is not operating efficiently in the sense of the second law. 

Effect of Ste : The Stefan number is the ratio of sensible heat to latent heat of the PCM. As this number 

tends to infinity (Ste ∞→ ), sensible heat storage dominates, while when Stefan number approaching zero 

(Ste 0→ ), latent heat storage dominates. For optimal PCR operation, the latter limiting case is preferred , 
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since this means that there is a great amount of latent heat which can be stored(relative to sensible heat). 

However, physical properties of useful phase change compounds and usable temperature ranges generally 

limit Ste to O( 210− ) .The practical upper limit on Ste is O(1), since larger values of Ste would mean that 

the amount of sensible heat is much higher than the latent heat. These effects are clearly observed from 

Figure 2. 

Effect of St: The Stanton number is defined as the ratio of inter-phase heat transfer by film convection to 

inter-phase heat transfer by bulk flow convection. 

It is a gauge of the relative importance of convection on each of the length scales. Generally St ranges 

between 0.5 and 300, depending upon the working fluid phase, the physical properties, and the fluid flow 

rate through the bed. As St ∞→ , the PCR becomes close to ideal condition, since the characteristic time 

for heat transfer by bulk convection is much greater than the characteristic time for heat transfer by film 

convection around the PCM. The effect of St can be seen in Figure 3, which shows a series of responses 

(with St as the parameter) for the heating period (Figure 3a) and the cooling period (Figure 3b). For a 

value of St of 10, the PCR performance is approaching the ideal case, while for a value of 5 the 

performance is deviating from the ideal condition. For the non ideal PCR the outlet temperature is greater 

than mT  for a cooling period and less than mT  in a heating period, since the energy in the fluid cannot be 

transferred to/from the PCM fast enough. 

Effect of Bi: The Biot number is defined as the ratio of heat transfer rate by convection in the film 

surrounding the PCM to the heat transfer rate by conduction in the PCM. Generally, Bi can range between 

0.1 and 100 depending upon the value of the convective heat transfer coefficient. As Bi increases, the rate 

of heat supply to the PCM increases. When this happens, the rate of heat supply to the PCM is greater than 

the rate of heat conduction in the PCM, so heat cannot be stored at a fast enough rates. Figure 4 shows 

this effect upon the temperature response. As illustrated in the figure when Bi decreases from 20 to 0.1, 

the response begins to resemble that of the ideal PCR. This effect is evident in both the heating period, 

Figure 4a, and also in the cooling period, Figure 4b. From Eq. (8), it is obtained that rather than the Biot 

number itself, a more meaningful measure of the non ideality of the PCR caused by PCM thermal 

conduction is the ratio of the Bi and St. The term (3Bi/St) in Eq. (8) is the ratio of heat transfer by bulk 

convection in the bed to heat transfer by conduction in the PCM. Therefore, as the characteristic time for 

heat transfer in the PCM becomes smaller, relative to the characteristic time for heat convection along the 

bed, the PCR becomes more efficient at storing heat and thereby approaches the ideal PCR. Thus, as 

(3Bi/St) 0→  the PCR becomes more ideal. 

Effect ofψ : The accumulation parameter is the ratio of the volumetric heat capacity of the fluid to that of 

the PCM. The value of ψ  is O ( 310− ) when the fluid passing through the PCR is a gas and O (1) when the 

fluid is a liquid. From the definition ofψ  , it is apparent that ψ  should affect the fluid temperature history 

by changing the velocity of the temperature front through the bed. The latent heat contribution is 

significantly larger thanψ . However as ψ  increases, the entire response curve is shifted forward to longer 

times, since the onset of the response is governed by the passage of the first front (the sensible heat front) 

through the bed. These effects are illustrated in Figure 5. 

 

PCR EXPERIMENTS 

     An experimental, lab-scale, low-temperature PCR was built to test the mathematical model. Only a brief 

description of the test PCM and PCR will be presented here. A supported PCM was made from 

polypropylene filled with distillated water in the spherical balls of 37 mm OD and 0.5-m wall thickness. 

Figure 6 shows a schematic diagram of experimental setup. The bed container is a PVC tube 100 mm in 

ID, 5mm in wall thickness and 260 mm in length. Two thermocouples were affixed to the outside of the 

bed container. 

     The PCM is confined in the tube by two porous distributor plates at the ends of the tube. These 

distributor plates with 2 mm thickness were made from porous polypropylene, 0.15 mm average pore size. 

The thermocouple leads are sealed to the outer surface of the porous plate. Each distributor disk is held in 

an O-ring sealed holder, machined from PVC which slips snugly into the bed container tube. The bed filled 
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with PCM and capped at both ends with the thermocouple-embedded distributor plates, was centered in 

the partials tubes. 

Temperature measurements from the inlet and outlet of the PCR were recorded by a simple data 

acquisition system consisting of a measurement unit with two thermocouple slots. The measurement 

accuracy was in the order of 0.01 o C. 

 

 

CONCLUDING REMARKS 

     With the importance of heat recovery systems to reduce energy consumption, there is a need to develop 

an understanding of the PCR operation. A comprehensive computational scheme was presented for the 

prediction of the temperature histories of the system. The PCM scale is modeled successfully by 

appropriate transformations, immobilizing the moving boundary and discretizing via orthogonal 

collocation. The numerical solution of the model equations is done efficiently and accurately with minimal 

computer resources and time. Simulations can be used to predict temperature profiles within the bed and 

the outlet fluid temperature. Parametric studies have verified that for all practical purposes, the ideal PCR 

is approached for: (3Bi)/St< 310*5 − ; Pe>40; St>50; Ste< 110− ; and 1≥ψ . 

     The computational model which was developed is comprehensive and robust. It is capable of assessing 

the effect of operating and design parameters and performance of commercial-size PCRs. 

As it stands, the model solved by the developed numerical algorithm, is a useful tool for predicting thermal 

response for large-scale adiabatic PCRs. 

 

 

 

NOMENCLATURE 

 

)3,2,1( =iAi = coefficients used in Eq. 18 

Bi   = Biot number (Eq. 9) 

C   = heat capacity, kJ/kg. K 

h = convective heat transfer coefficient, W/ 2m K 

k = thermal conductivity, W/m.K 

L = bed length, m 

N = number of cells 

R   = radius, m 

St = Stanton number (Eq. 6) 

Ste = Stefan number (Eq. 3) 

t   = temperature, K 

T = dimensionless temperature (Eq. 1) 

 

Greek letters 

dδ = solid-liquid interface position, m 

ζ = dimensionless immobilized coordinate (Eq.16 and 17) 

ω = domain endpoint (Eq.10) 

λ = latent heat, kJ/kg 

τ  = actual time, s 

ϑ  = non dimensional time coordinates (Eq. 5) 

ϕ  = dimensionless radius, 
PCMR

r
=ϕ  

ψ  = accumulation parameter (Eq. 2) 

ε  = voidage 

fv  = fluid superficial velocity, m/s 
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ρ  = density, kg/ 3m  

Subscripts 

co = core phase 

c = cold stream or cooling period 

dp = distributor plate 

f = fluid 

h = hot stream or heating period 

i = inlet or inner 

l = liquid phase 

m = melting point 

n = stage number 

o = outlet or outer 

PCM= PCM property 

p =  packing 

s = solid phase 

sh = shell phase 

x= generic for h and c 

y = generic for s and l 

yi = generic for inner phase s and l 

yo= generic for outer phase s and l 

Superscripts 

s = modified shell phase 

Acronyms 

BC = boundary condition 

ODE = ordinary differential equation 

PC = phase change component 

PDE = partial differential equation 

PCR = phase change regenerators 

PCM = phase change materials 
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        Figure 1    Effect of mT  on the fluid temperature history. 

        (a) Heating period; (b) Cooling period 
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  Figure 2   Effect of Ste on the fluid temperature history. 

             (a) Heating period; (b) Cooling period. 
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                        Figure 3   Effect of St on the fluid temperature history. 

(a) Heating period; (b) Cooling period 
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                        Figure 4    Effect of Bi on the fluid temperature history. 

(a) Heating period; (b) Cooling period. 
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   Figure 5   Effect of ψ  on the fluid temperature history. 

(a) Heating period; (b) Cooling period. 
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              Figure 6   Schematic diagram of experimental setup 

 

 

 

 


