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ABSTRACT

A crack in structural member introduces local flexibility which is function of crack depth. This
flexibility changes the dynamic behavior of the system and its stability characteristics. A continuous
cracked beam vibration theory is implemented for the lateral vibration of cracked Euler—Bernoulli
beams with single-edge open cracks. In this work, the crack identification (health monitoring) for
simply supported graphite/epoxy fiber reinforced composite beams is considered. The effects of crack
depth and height, fiber orientation, and fiber volume fraction on the flexibility and consequently on
natural frequency and mode shapes for cracked fiber reinforced composite beams are investigated.
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1. INTRODUCTION

The proper selection of the orientation angle of the different layers of fiber is akey featurein the
design of composite structures. In fiber composites, the stiffness of theindividual plies depends on the
angles of fiber orientation with respect to the loads. High speed machinery and lightweight structures
require high strength-to-weight ratios. For this reason, in recent years, the use of anisotropic reinforced
composites, for which strength-to-weight ratios are very high, has increased substantially in the fields
of mechanical and civil engineering [Vinson and Chou, 1975]. Cracks occurring in structural e ements
are responsiblefor local stiffness variations [Irwin, 1956], which in consequence affect their dynamic
characteristics, namely, natural frequency and damping. [Cawley and Adams, 1979] detected damage
in compasite structures by frequency variation. [Karaagac et al, 2009] studied the cracked beam using
finite d ement analysis and compared with experimental results. [Krawczuk and Ostachowicz, 1995]
studied the effects of crack on Euler Bernoulli cantilever compasite beam using the local compliance
matrix [Nikpour and Dimarogonas, 1988] for unidirectional composite materials. Using the local
flexibility concept, [Song et al, 2003] studied the same problem using Timoshenko beam theory. The
cracked beam is modeled as two segments interconnected by a mass less rotational spring. In the

present study a model of afiber reinforced composite simply supported beam with a transverse one-
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edge non-propagating open crack is considered. By using this model, the influence of the depth and
location of the crack, ply orientation angle, and fraction of fibers on the bending natural frequencies of

the simply supported composite beam have been investigated.

2. Cracked Composite Beam Model:

The vibration of afiber reinforced composite simply supported beam with edge transverse surface
crack is considered. The crack in structural member introduces local flexibility as a mass less
rotational spring and is function of crack depth. This flexibility changes the dynamic behavior of the
system and its stability characteristics. The vibration theory, linear fracture mechanics, the Castigliano
theory and lamination theory are used to model the cracked beam system as Euler Bernoulli beam. The
cracked beam is modeled as two segment interconnected by arotational spring. Eight boundary
conditions were obtained used to solve the Euler-Bernoulli beam equation for the two segments as
depicted in Fig. 1. The additional elastic deformation energy U of the composite beam due to the crack
can be expressed, in general form, by therelation [Nikpour and Dimarogonas, 1988]

U :j(Dlz::\l Kﬁ"‘Dzz:j K +Dsz:j K||2i +D4z:j Kﬁn )dA «y
A

whereK, , K, andK,,, arethestressintensity factors corresponding to three modes of the crack.

The coefficients D, , D,, D3, and D4, given by [Nikpour and Dimarogonas, 1988] as.

D, =050, Im> %2
1S,
D, = b_11 Im(s;s,) )
D, :0-5b_11|m(81+82) D, :lvbess
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The complex constants s, and s, are roots of the characteristic equation [Sih and Chen, 1981]:

511 st - 2516 s+ (2612 + 566)82 - 26268+ 522 =0 (3)
The constants Bij are calculated from therelations [Sih and Chen, 1981]:
bu =b,m* + (2b, + b, )m*n® + b,,n*

b2 =b,n* + (20, + b, )m?n? + b,,m*

bi = (b, +b,, — b, )mM?n? + b, (M’ + n*)

bis = (=20, + 2b,, + b, )m*n+ (2b,, — 2b, — b, )mn®

bz = (—2b, + 2b, + b )n*m+ (b,, — 2b, — b, )nm°

bes = 2(2b, — 4b,, + 2b,, — b, )m?n? + b, (m* + n*)

(4)
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Figure 1 The geometry and model of unidirectional fiber reinforced compasite simply supported
beam with transverse open crack.

Where m=cos « and n=sin « (a denotes the orientation angle). The terms by; are related to the

mechanical constants of the material.
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whereas the mechanical properties of the composite E;q, Ex, Gip, v12 @and p are calculated by using the

following formulas [Vinson and Sierakowski, 1991], the subscript f denotes fiber, the subscript m

denotes matrix and E, G, v and p are the modulus of elasticity, the modulus of rigidity, the Poisson’s

ratio and the mass density, respectively):

p=pV +p,(1-V)

E,=EV +E_ (1-V)

£ -E. {Ef +E, +(E, —E, )V }
E: +E,—(Ei —E, )V

V,=V.V +v_(1-V)
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Generally, for anisotropic materials, the stress intensity factorsKj; (j=I, II, I11; i =1,N) for the crack in

the composite beam according to [Bao et a, 1992] can be written as:

K; =o,raF, (a/h,A""1 /h,¢) 7)
where o, denotes the stress at the crack cross section due to the iy, independent force acting on the
beam, a is the depth of the crack, F; denotes the correction function (j=I, I1, I1I; i =L,N),Aand( are

dimensionless parameters which characterize the in-plane orthotropy and | and h are the length and
height of the beam, respectively, as shownin Fig. 1.
The dimensionless parameters A and { are defined as functions of the elastic constants by [Suo,

1990]

,IZEZ/ 1 é:\/EuEzz — VL)
Eu 2G,, A

It was shown by [Bao et al, 1992] that the effect of A¥“l /h is negligible. Hence:

K, =oNraY, (¢)F, (34) ®)
Where Y, is the correction function which takes into account anisotropy of the material. And

Fi (%) is the correction function which takes into account finite dimensions of the beam. With

account taken of the fact that the beam analyzed is subjected only to the bending moment, the
additional elastic deformation energy is[Crawczuk et a, 1995]

U= D,[KZdA ©)
A

Where K lzs is the stress intensity factor corresponding to the bending moment M . acting on the beam
with
K lzs =(6M /bhz)\/naYl(C)Fls(a/ h) (10)

The correction functions Y, (§) and Fg(a/h) aregivenas:

Y, =1+0.1(¢ —1)—0.016( —1)° +0.002(¢ ~1)° (11)
Fo(alh)=tany /7 {0.923+ 0'199£2;9“y) } (12)
Y

Where y =ra/2h
Following the same procedure used by [Crawczuk, 1995] by applying the Castigliano theorem, part I1,
[Przemieniecki, 1967] yields the additional flexibilityC ;js of the composite beam due to the transverse

one edge open crack as
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Cés = T[éy| ©)? F s(g)z}dg (13)

Wherea =a/h and da =da/h

The additional flexibility of the beam dueto the crack can be presented in non-dimensional form as:
p=IS,ca/L (14)

Where| is the geometrical moment of inertia of the beam cross-section andS,; isgivenas

S, =5,m*+2(S,+2S,)m’n*+S,,n* (15)

Theterms S; are determined from the relations [Vinson and Sierakowski, 1991]:

Ell
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Substituting Eqg.13 into Eq .14 yields:
h =
p =6D,S,7 - [[aY, ({)F s(@)]da (16
0

For the fiber reinforced composite beam, due to the crack existence, thelocal flexibility appears and

can be derived as shown in Eq. 16
Flexibility variation due to the change in fiber volumefractions (V, ) and crack depths (a) at constant

orientation angle ( @ = 0) is shown in Fig. 2 with |=1m, h=0.025m, b=0.05m and material properties
for graphite/epoxy fiber reinforced composite simply supported beam listed in Table 1.

Table 1The material properties for the composite beam.

E (GPa) | G(GPa) | p(Kg/m®)

Fiber 275.6 1148 1900
Matrix 2.756 1.03 1600
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Figure 2 Flexibility changes with fiber volume fraction with 6= 0, a =0, 0.3, 0.5, 0.7.

Figure 2 shows the effect of fiber volume fraction (\/f ) on theflexibility for different crack depth
a=0.0,0.3,05and 0.7. For V, = 0and 1, theflexibility magnitude is diminished .This occurs
because at these both values, the material will be eventually isotropic material. When0< V, <1, the
anisotropy of the material appears and the flexibility appears too .The flexibility increases asV

increases up to 0.4, then decreases to vanish at V, = 1. On the other hand, by increasing the crack
depth, the flexibility magnitude increases (or the stiffness magnitude of the beam decreases). It is
significant to mention that the maximum flexibility magnitude reached when (V, = 0.4) for all crack
depths.

Flexibility variation due to the change in fiber volume fractions (V ¢ ) and crack depths @ at constant

orientation angle( 8 = 90) isshown in Fig. 3. A reverse behavior shown in Fig. 3, the flexibility is
maximumat V, = 0 and 1, representing isotropic material. The flexibility is decreasing by increasing
V; up to 0.4 then theflexibility isincreasing till V; = 1.0 .The flexibility magnitude is much smaller
for 6 = 90 than that for 6 = 0. Thisimplies that flexibility is effective when fibers are perpendicular to
the crack width.

Figure 4 represents flexibility changes with changing in fiber orientation angle at different crack
depths with constant fiber volumefraction (V, =0.5). The figure shows the effect of fiber orientation
on the flexibility when 0 = 0, fibers are perpendicular to crack width, the flexibility (stiffness
reduction) is maximum. As the fiber inclinesin direction to the direction of crack width, the flexibility
effect decreases to vanish when the fiber direction is parallel to crack depth, 6 = 90. Thelarger the
crack depth is, the larger the flexibility is. It is clearly shown that the flexibility due to the crack in the
composite beam is a function of the anisotropy of material, the volume fraction of fibers, the angle

between the fibers and the crack and the crack depth.
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Figur e 3 Flexibility changes with fiber volume fraction with 6 =90, a=0, 0.3, 0.5, 0.7.
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Figur e 4 Flexibility changes with fiber volume fraction at crack depths (a= 0, 0.3, 0.5, 0.7)

3 RESULTS AND DISCUSSION

3.1 Natural Frequenciesfor Composite Beams

In this section the natural frequencies for simply supported fiber reinforced composite beam is
presented. The material properties and dimensions are chosen same as in previous section since they
arewidely used in many engineering applications like aircrafts, wind turbines, formula cars, etc.
Thefirst two natural frequencies for simply supported composite beam with eight plies stacking with

[90]4s, [0]4s and [45] 45 are presented in Figs. 5, and 6, respectively, as function of fiber volume fraction

(V). From thesefigures, the natural frequencies are increasing by increasing the fiber volume

fraction (V, ).Thisis expected since the material properties for fibers are of large values. The

orientation angle 0 has significant effect on the natural frequency as shown in the Figs. 5-6. The
natural frequencies of zero fiber orientation angle 6 = 0 are higher than that for those angles (6 = 45)

and (6 = 90), thus with increasing in the fiber orientation angle there is a corresponding decreasing in
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natural frequencies with volume fiber fraction increment. It is noted that at zero fiber volume fraction
(100% matrix) and at unity of fiber volume fraction (100% fiber) all three types of natural frequencies
have the same values for the case of 0 and 1 fiber volume fraction. This corresponds to the isotropic

material where the orientation angle is not affecting the natural frequencies.
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Figure 5 The relation between thefirst natural frequencies and fiber volume fraction for simply
supported beam fiber orientation angles (0 = 0, 45, and 90)

3.2 The Effects of Crack Depth and L ocation on the Natural Frequencies:
From Fig.7, whenV, = 0.5, a= 0.2, 0.3, 0.5, 0.7 and 0.8 with non dimensional crack locations (s)

from 0 to 1 for simply supported composite beam, the first natural frequency is maximum at crack
location (s = 0) and (s = 1), which corresponds to the uncracked beam. The natural frequency
decreases from crack location (s = 0) till the minimum value at crack location (s = 0.5), then increase
to the maximum value at crack location (s = 1). For the second natural frequency as shown in Fig. 8 is
maximum at crack locations (s = 0), (s= 0.5) and (s=1), and minimum at crack locations (s = 0.2) and
(s=0.8). The natural frequency decreases from crack location (s) of zero till the minimum value at
crack location (s = 0.2), then increases to maximum value at crack location (s = 0.5). The curveis
symmetric around the middle crack position (s = 0.5). As the crack depth increases, the corresponding
natural frequencies decrease for each crack location. This is compatible with theincrease of flexibility,

or decrease in the stiffness of the beam. Similar trend can be found in Figs 9 and 10 for 6 = 90.
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Figur e 6 The relation between the second natural frequencies and fiber volume fraction for simply
supported beam fiber orientation angles (6 = 0, 45, and 90)
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Figure 7 The relation between thefirst natural frequencies and non dimensional crack locations for
simply supported composite beam with (a= 0.2, 0.3, 0.5,0.7and 0.8),V, = 0.5, 6=0
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Figur e 8 The relation between the second natural frequencies and non dimensional crack locations for
simply supported composite beam with (a= 0.2, 0.3, 0.5,0.7and 0.8),V, = 0.5, 6=0
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Figure 9 The relation between thefirst natural frequencies and non dimensional crack locations for
simply supported composite beam with (a= 0.2, 0.3, 0.5, 0.7 and 0.8), V, = 0.5, 6 = 90
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Figure 10 Therelation between the second natural frequencies and non dimensional crack locations
for simply supported composite beam with (a= 0.2, 0.3, 0.5, 0.7 and 0.8), V, = 0.5, 6 = 90

Next, by varying crack depth at constant non dimensional crack location, the first and second natural
frequencies are calculated for V, = 0.5, 6= 0and 90, asshownin Figs. 11 and 12, respectively. It's
shown from these figures that the natural frequency at fiber orientation angle (6 = 0) is higher than that
at (0 = 90), and thisis dueto the flexibility which will be higher inthecaseof (6 = 90). It's clear that

the natural frequency will decrease with increasing in the crack depth.

3.3 Mode Shapes for Fiber Reinforced Composite Beams

In the previous sections, the mathematical modeling representing the vibration maotion of the fiber
reinforced composite was investigated and the natural frequencies of the system were calculated. In
this section, the corresponding mode shapes for cracked compasite simply supported beam will be
presented for different crack locations and depths.

Figures 13 and 14 show the first mode shape at crack location (s = 0.1) with V, = 0.5 for crack depth

(a=0.3and 0.7), respectively. From these figures, the existence of crack will change the stiffness of
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Figure 11 Therelation between first natural frequency and non dimensional crack depth for simply
supported composite beam at fiber orientation angles (f = 0 and 90), s=0.2and V, =0.5.
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Figure 12 Therelation between second natural frequency and crack depth for simply supported
composite beam at fiber orientation angles (6 = 0 and 90), s=0.2and V, =0.5.

the beam, and this can be noted from shifting the mode shape from healthy mode to the left. The larger
the crack depth is, the larger the deviation that the mode shape experiences. The mode shapeis shifted
to |eft since crack depth located at the |eft side, (s = 0.1).

Figures 15 and 16 present the second mode shapes for cracked simply supported eight pIi&s[O] 4s

composite beam with crack location at (s=0.1) for a= 0.3 and 0.7, respectively. The existence of
crack will change the stiffness of the beam, and this can be noted from the shifting of healthy mode to
theleft. It can be noted that the nodal point for the second mode is shifted to left from the original
theoretical uncracked beam (which islocated at s = 0.5), whileit isfound at (s= 0.45 and 0.46) for
a=0.3and 0.7, respectively. The deterioration of mode shapeis significant for (a = 0.7).
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Figur e 13 First mode shape for cracked simply supported beemwhen (s=0.1, a=0.3, 8 =0).
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Figur e 14 First mode shape for cracked simply supported beemwhen (s=0.1, a=0.7, 8 =0).
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Figur e 16 Second mode shape for cracked simply supported beemwhen (s=0.1, a=0.7,8=0).

4. CONCLUSIONS

The crack identification for fiber reinforced compasite simply supported beams is investigated. In
modeling and analyzing the system, theory of fracture mechanics, theory of dasticity, theory of
composite lamination, and theory of vibration were implemented to abtain the two main parameters,
namely, natural frequency and corresponding mode shapes to identify (or on line health monitoring)
cracked composite beams. The cracked beam is model ed as two segment interconnected by rotational

spring. Eight boundary conditions were used to solve the Euler-Bernoulli beam equation for the two
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segments. The effects of crack depth and crack location, anisotropic properties such as angle
orientation and fiber volume fraction on the flexibility and natural frequency for fiber reinforced
composite beam are revealed. For composite simply supported beam, at constant crack location, the
first and second natural frequencies are found to decrease as the crack depth increases. Thefirst
natural frequency is decreasing as the crack location is going away from the support till the minimum
value at the mid span. Thisis due to the fact the bending stress is maximum at that location. The mode
shape for simply supported beam is deteriorated upon the existence of the crack, and this deterioration
isincreasing as the crack depth increases. The mode shape shifts to the side where the crack is located.
The nodal point for the second mode is varying depending on the crack depth and location. The
variation of natural frequencies and mode shape may be used to detect the crack profile for on-line

structural health monitoring.
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