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Abstract  

This paper deals with the problem of the attitude motion of a torque free dual-spin spacecraft using ring 

dampers. The system composed of two balanced, axisymmetric rigid bodies and double totally filled viscous 

ring dampers mounted with offsets center from the spin axis on the rotor section of the spacecraft. It is 

shown that the fluid motion occurs in two distinct modes, previously named the nutation synchronous mode 

and spin synchronous mode. Using a Newton-Lagrange approach, the equations of motion are developed 

resulting in equations in terms of system variables and parameters. An approximate solution for the nutation 

angle time history is obtained and the time constants for the two modes of motion are given as a function of 

suitable dimensionless parameters. Comparison is then made with the solution that obtained by numerical 

integration of the equations of motion.  It is seen that the increase in the ring center offset distance results in 

decreasing the time constant in the spin-synchronous mode, while it has nothing to do for the time constant 

in the nutation-synchronous mode.   

 

1-Introduction  

      A dual spin spacecraft consists of two bodies constrained to relative rotation about a shaft connecting the 

bodies but otherwise free to rotate in space. The bodies are in general flexible and dissipative, as is the 

connection between them, and all spacecrafts are subjected to environmental torques such as the gravity 

gradient torque. However, as a first approximation it is useful to model dual-spin spacecraft as two rigid bodies 

connected by a rigid shaft and free for external torques.  
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       Of the various schemes which have been proposed and analyzed the ones, which is called the nutation ring 

dampers, containing fluid in a closed tube are especially desirable since they do not involve any moving parts, 

other than the fluid. This type of dampers is either partially or fully filled with a viscous fluid. In this device, 

kinetic energy is dissipated by converted into heat when nutational motion causes the fluid to move through the 

tube. The first use of this damper, with the mercury fluid, was on the1958 Pioneer1 lunar [1].    

        A partially filled viscous ring damper on a spinning satellite was first analyzed by [2] and [3]. They 

assumed that the motion of the damper did not appreciably affect the precession rate of the satellite but acted 

only as a source of energy dissipation. With this assumption the motion of the fluid on the tube was then treated 

as a fluid mechanics problem. A different approach to the analysis of the mercury ring damper was taken by [4], 

where the fluid was modeled as a lumped mass in the presence of the assumed damping forces. They identified 

two distinct modes of motion, which they named, the nutation synchronous and spin synchronous modes. 

Alfriend [5] treated with the fluid, not as a point of mass as given in [4], but as a rigid slug of finite length. 

Approximate equations for time constants in the two modes have been developed and comparison with 

numerical integration of the exact equations shows that the approximations are good ones.  

The problems of the fluid separation into several slugs and spreads out on the internal wall, which 

occurs in these dampers, are avoided by using fully-filled ring dampers. A completely filled viscous ring 

damper provided with a rigid ball, to enhance the damping performance, on dual-spin spacecraft as a passive 

nutation damping system was analyzed in [6], using two types of fluids, liquid mixture and neon gas. The ball 

motion was experienced to occur in two modes of motion as given by [4].  

       In this paper, double totally filled viscous ring dampers were used as a passive nutation damping system to 

reduce or eliminate the undesirable attitude motion of an axisymmetric dual-spin spacecraft. The dampers are 

mounted with equal offsets center from the spin axis in the rotor section of the spacecraft.  

 

2-Dual-Spin Spacecraft Model  

       Consider the dual-spin spacecraft of Fig. (1), which consists of two symmetrical rigid bodies Rr and P 

constrained to rotate about the axis of symmetry with a relative angular rate rα& . Let a set of mutually 

perpendicular axes ouvz  and zvuo ′′′ , fixed in the center of mass of the spacecraft, such that the u and u′  axes 

passing through the center of mass of a portion of the fluid and making an angle α  counterclockwise with 

respect to the x-axis of the local coordinate system xyz, which is fixed in the spacecraft center of mass O.

2.1-Equations of Motion  
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       For the spacecraft system under consideration (Fig.1), the equations of motion which describe its rotational 

behavior about the center of mass O in a torque free environment are obtained using the conservation of angular 

momentum and Lagrange’s equations for the motion of the fluid inside the tubes. The angular momentum of the 

system about the spacecraft center of mass is given by:  

 ( )
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Figure (1) Dual-Spin Spacecraft Containing Nutation Dampers.  

 

Equating the angular momentum to zero ( 0=h
&r

), the equations of motion will be:  
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Lagrange’s equation expressed in terms of quasi-coordinates α  is: 
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where, αQ  is the generalized moment associated with the quasi-coordinates α , and it is given by;                    

αα
&

22 RCQ f= , fC  is the coefficient of the viscous friction between the viscous fluid and the ring wall. 

After substitution the derivatives, Eq. (5) becomes: 
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It is advantageous in this problem to express all the equations in suitable dimensionless variables and 

parameters, thus the equations of motion, Eqs.(2,3,4,6), become:  
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3-Approximate Analysis (Zero Order Approximation method)  

       The equations of motion are strongly coupled nonlinear differential equations, an approximate solution is 

found depended on the zero order approximation method, which is based on the fact that the mass of the fluid is 

much smaller than that of the spacecraft. This means that the ratio of the fluid moment of inertia ( 2
mR ) to the 

transverse moment of inertia of the spacecraft (ε) is neglected anywhere. Before developing the solution for the 

motion of the fluid, the equation for the nutation angle will be developed. The nutation angle θ  is given by: 
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where, th  is the transverse component of the angular momentum, 222

vut hhh +=  and zh  is the spin axis 

component of the angular momentum, differentiation of Eq. (11) gives  
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Substitution of Eq. (1) for uh and vh  gives  
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where, )(εf  represents the term containing the parameter ε . 

Now applying the zero order approximation method, by neglecting the terms containing the parameter ε , thus 

the equations of motion become s: 
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where, sn λσλ +−= 1  is the nutation frequency. The solution for p  and q  is:  

                       )cos( ατλω −= ntp                                                                                                   (18)                            

                       )sin( ατλω −= ntq                                                                                                     (19)                            

where, tω  is the total transverse angular velocity component. 

The equation for θ  becomes:  
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where, sn λσσ += . Now, it is need to obtain the solution for α . 
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4.1-Nutation Synchronous Mode  

       Let φ  represent the position of the center of a portion of the fluid with respect to the nutation plane. 

Assuming that at τ =0, α =0, then  

                        τλαφ n−=                                                                                                               (22)                                           

Eq.(17) becomes:  
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In the nutation synchronous mode the fluid moves at a constant rate with respect to the spacecraft, the relative 

position φ  is constant. Accordingly, the particular solution of Eq. (23), is sφφ = . Therefore, substitution of sφ  

into Eq. (23), and taking into account that 0=′′=′ φφ , then 

                   [ ] nstnst bbGG ηλφωλφω 2)sin()1)(()cos(2 21

2 =+++                                                   (24)                             

and the nutation rate equation, Eq. (20), becomes: 
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then, substituting the left hand side of Eq. (24) into Eq. (25), get: 
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where, θσω tannt =  has been used, thus the solution  
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in which nτ  is given by:  
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where nη  is the damping constant in nutation-synchronous mode and given by: 

Ω
=
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where, v  is the kinetic viscosity of the fluid, Ω  is the initial spin rate of the rotor. 

Equation(27) is valid for 0<θ <
2

π
. For small θ  the nutation angle time history can be approximated by: 
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At the end of the nutation-synchronous mode, the system goes into the spin-synchronous mode and the nutation 

angle nθ  has minimum value in this mode. So, to satisfy the condition of minimum value of the nutation angle, 

the angle sφ  should be equal to 
2

π
± , substitute this value into Eq. (24), then the transition angle from one mode 

to other is  
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4.2-Spin Synchronous Mode  

Substitution the solution for p  and q into Eq.(17), gives  
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Since the spin synchronous mode occurs for the smaller nutation angle tω  <<1, also 2
G <<1, thus the last term 

within the brackets in Eq.(32) will be dropped.  

As it is mentioned previously that the fluid, in this mode, moves with a small variation in its speed, then  
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o

                                                                                                                (33)   

where, 
o

α  is the initial value of α  and α~  represent the small change occurs in α  such that 
o

α >>α~ . The basis 

of this assumption is that the change in α  is small compared with τλn . An approximate steady state solution of 

Eq. (32), may be given by    
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where, sθ  referred to the nutation angle in the spin-synchronous mode, and the constant K is given by: 
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The nutation angle equation is  

                   [ ] )sin()1)(()cos(2 21
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Assuming that sθ  is small enough, so that the terms of 
2

sθ  can be neglected and the change in α  is small, so 
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αα , then Eq. (36) can be reduced to; 
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where, 1E  and 2E  are constants and the time constant in spin-synchronous mode, csτ  is given by: 
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where, sη  is the damping constant in the spin-synchronous mode. 

The 1E  and 2E  terms contribute nothing to the exponential decay of the solution, so that the important part of 

the solution of Eq.(35) is  
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       In the present study a mixture of glycerin oil with water [(75%) glycerin and (25%) water] is used as a 

viscous liquid because it gives minimum weight of the damper and maximum energy dissipation [6]. He 

calculated the damping constant in this mode by empirical relation and it is found to be equal (0.15) which is 

adopted in this research.  

 

5- Results and Discussion       

       Figure (2) shows that the general trend of the nutation angle time history for both the analytical and 

numerical solutions. The effect of the second ring damper can be shown in Fig. (3), where it can be seen that the 

nutation angle decay in nutation-synchronous mode is decreased by (50%) compared with using only one ring 

damper as a passive nutation damping system. Analytically, this indicates to the fact that   the number of ring 

damper is equal to the number of times of the time constant which it will contract. 

       A comparison of the time constant in nutation-synchronous mode given by Eq.(27) and an “exact” time 

constant is given in Figs.(4-7). The “exact” time constant is obtained by assuming exponential behavior of 
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θcos  for the solution obtained by numerical integration of Eqs.(7-10) and calculating the time constant. Figures 

(4-7) show that the approximate solutions given by Eqs. (27) and (28) are good. 

       In the spin-synchronous mode, a comparison of the time constant given by Eq. (38) and an “exact” time 

constant is given in Figs.(8-13). The “exact” time constant was obtained by numerically integrating the exact 

equations of motion, assuming exponential behavior for maximum values of θ  during each oscillation and 

calculating the time constant. 

      Finally, the time history of the p, q, r components of the spacecraft angular velocity with time are shown in 

Figs.(14-16). The three dimensional phase diagram with inertia ratio (1.2) is shown in Fig.(17), with initial 

conditions for the angular velocity components;  (po, qo, ro)
T
 = (0.1, 0.32, 0.98)

T
 respectively.  

 

       Table (1): Design parameters of the system. 

 parameters Value 

 

Satellite 

Parameters 

A
 

C 

Cp
 

Ω  

PΩ  

σ  

36  kg.m
2 

43.2  kg.m
2 

0.2  kg.m
2 

10.5  rad/sec 

0.00007272  rad/sec 

1.2 

 

Rings 

Parameters 

R 

r 

d 

ε  

250 mm 

9.5 mm 

50 mm 

0.0009 

 

Fluid 

Parameters 

m  

fρ  

µ  

ν  

0.5186  kg 

1164.5  kg/m
3
 

67.9 







× −3

2
10

sec.

m

N
 

58.31 mm
2
/sec 
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The results show that the addition of second nutation ring damper on the spacecraft is greatly affecting the 

dynamic characteristics of the nutation damping system. Also it is seen that the increase in the ring center offset 

distance results in decreasing the time constant in the spin-synchronous mode, while it has nothing to do for the 

time constant in the nutation-synchronous mode.  
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Fig. (2): Comparison between analytical and numerical 

               solutions of the nutation angle time history. 

Fig. (3): Comparison of nutation angle time history of    

                nutation-synchronous mode using single and     

               double nutation dampers. 

Fig. (4): The variation of the time constant of nutation  

              synchronous  mode with the inertia ratio (σ).        
Fig. (5): The variation of the time constant with damping  

  Constant for nutation-synchronous mode .         
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Fig. (6): The variation of the time constant of nutation 

               synchronous  mode with the ring radius.          
Fig. (7): The variation of the time constant of nutation 

              synchronous  mode with the ring mean radius.         

Fig. (8): The variation of the time constant of spin 

              synchronous  mode with the inertia ratio (σ).                

Fig. (9): The variation of the time constant with  the    

                damping  Constant for spin-synchronous mode.         
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Fig. (10): The variation of the time constant of spin 

                 synchronous mode with the Ring radius.         
Fig. (11): The variation of the time constant of spin 

                synchronous  mode with the ring mean radius.         

Fig. (12): The variation of the time constant of spin-   

                synchronous mode with the ring height to    

                the ring mean radius ratio (b1).          

Fig. (13): The variation of the time constant of spin-  

                synchronous mode with the ring height to  

                the ring mean radius ratio (d).    
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Fig. (14). The time history of the  p  component of  

                 the spacecraft angular  velocity.          

Fig. (15): The time history of the  q  component of  

                 the spacecraft angular  velocity.          

Fig. (16): The time history of the r component of the  

                  spacecraft angular velocity.          

Fig. (17): Three dimensional phase diagram. 


