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Abstract 
      In this paper; non-linear analysis of steel 

frames subjected to seismic forces is presented. 

      The analysis adopts the beam-column 

approach. The formulation of beam-column 

element is is based on Eulerian approach. 

Changes in member chord length due to axial 

strain and flexural bowing are taken into 

account. 

      A modified tangent stiffness matrix which 

takes into consideration the geometrical non-

linearity is used. 

      A special form to formulate the seismic 

forces and the monotonic load-deflection 

response of frames is traced using the 

incremental load control Newton-Raphson 

iterative technique. 

      It was concluded that considering large 

displacements tend to reduce the collapse loads 

of steel frame in the order of (4-40%) 

depending upon the number of stories of the 

frame. 

 

Keywords: Non-linear; Steel frame; Seismic 

force; Earthquake duration; Sub-grade 

reaction.  

 

Introduction 
      During the last decades, a number of major 

developments have taken place in the area of 

non-linear analysis and design. The researchers 

that deal with non-linear structural problems 

take into consideration either geometric or 

material non-linearity or both together. 

      Geometrical non-linearity occurs in two 

classes of non-linear problems; a stability ( of 

which the non-linearity is mainly due to the 

coupling effect of axial force and flexural 

moment), and a large displacement problem ( 

of which the non-linearity occurs when the 

deformation becomes large enough to cause 

significant changes in the geometry of the 

structure, so that the equations of equilibrium 

must be formulated for the deformed 

configuration).  In comparison with linear 

problems, for which the terms constituting the 

stiffness matrix of the structure are constant, 

the stiffness matrix for geometrically non-

linear problems contains terms that are non-

linear functions of the deformations of the 

structure. 

      The objective of this paper is to derive the 

equation of motion, and deriving a modified 

tangent stiffness matrix (TSM) in global 

coordinates which takes into account the 

geometric non-linearity. The load comes from 

base motions due to earthquake is added to 

static loads. 

 

Theory and Analytical 

Solution 
      In the beam-column approach, Eulerian, or 

updated lagrangian coordinates is used in 

developing element stiffness matrix. The effect 

of geometrical non-linearity is accounted for 

by coordinate transformation. The non-linear 

behavior of the element is represented by the 

incremental or tangent stiffness matrix. 

      In this paper; the beam-column element is 

developed by using a beam-column approach. 

In formulating the elemental using force-

displacement relationship, the basic stiffness 

matrix obtained is transformed into the element 

stiffness matrix by coordinate transformation. 

Since the incremental Newton-Raphson 

solution technique is used, the element 

stiffness matrix is presented in the incremental 

form to facilitate the numerical 

implementation. 

      The following assumptions are considered 

in the modeling of the beam-column element; 

1-  The member is prismatic and plane sections 

before deformation remain plane after 

deformation. 

2- Although large rigid body displacements are 

allowed, relative member deformations are 

considered to be small enough to justify the 

use of beam-column theory. 

3- Influence of axial force on member stiffness 

is taken into account. 



4- Effect of flexural moment on axial stiffness 

is taken into account. 

5- Changes in member chord length due to 

axial strain and flexural bowing are taken into 

account. 

6- Loads are applied only at joints. 

1- Member Force-

Deformation Relations    
   Considering an arbitrary prismatic member 

of a plane frame and let (F) and (V) denote the 

member and forces and displacements, 

respectively, in global coordinates as shown in 

Figure(1). In order to separate rigid body 

displacements from relative member 

deformations, an Eulerian local coordinate 

system is used as shown in Figure(2). 

 

 

 

Figure (1) Member forces and deformations in 

global coordinate. 

  

 
Figure (2) Relative member deformation and 

corresponding forces in local coordinates. 

 

 

The global member forces, (F), are related to 

the corresponding local forces, (S) by: 

 

(F) = [B] (S)                                                       

                              (1) 

 

In which 

S1 = M1, S2 = M2, S3 = Q.L                                

                              (2)    

 

The transformation matrix [B] is; 

[B] = [R] [ ]                                                      

                              (3) 

 

From Figure(3): 

 

(F) = [R] ( ), (  ) = [R]
T
 (ΔV)                         

                             (4) 

 

In which; 

[R] = [
    

    
];   [r]=[

    
    
   

]               

                             (5) 

 

 

Where; 

C = cos α. ;S = sin α.                                          

                          (6) 

 

Noting that "α" refers to the orientation of the 

chord in the deformed configuration, and 

similarly; 

 

( ) = [   ( ) ; (  ) = [ ]
T
(  )                         

                             (7) 

 

In which; 

 1 = M1 ,  2 = M2  ,  3 = Q.L                              

                             (8) 

 1 = ө1 ,  2 = ө2 ,  3 = U/L                               

                              (9) 

  

Using structural matrix analysis with; 

tanα = 
          –            

                  
                                  

          (10) 

 

and 

L(1+s) = [ (x2+Lv4-x1-Lv1)
2
 + (y2+Lv5-y1-

Lv2)
2
]

1/2
                         (11) 

 

In which (x1,y1) and (x2,y2) are the global 

coordinates of joints "1" and "2" respectively. 

      The relationship between the relative 

member deformation ө1, ө2 and u, and the 

corresponding member end forces M1,M2 and 

Q, shown in Fig. (2), can be based on beam-

column theory for elastic members, thus: 



M1 = 
  

 
 (C1 ө1 + C2 ө2)                                       

                         (12) 

M2 =  
  

 
 (C2 ө1 + C1 ө2)                                      

                         (13) 

Q = EA (
 

 
 – Cb)                                                  

                         (14) 

In which; 

C1, C2 = conventional elastic stability 

functions. 

And; 

Cb = b1 ( (ө1-ⱷ1) + (ө2-ⱷ2) )
2
 + b2 ( (ө1-ⱷ1) + 

(ө2-ⱷ2) )
2 
              (15) 

 

Cb          : is the length correction factor due to 

bowing action. 

b1, b2     : elastic bowing functions. 

 

2- Member Tangent Stiffness 

Matrix 
      The incremental relationship between the 

member end forces and end displacements in 

global coordinates can be written as: 

(ΔF) = [T] (ΔV)                                                  

                        (16) 

 

In which the member tangent stiffness matrix, 

[T], is given by: 

[T] = [B] [t] [B]
T
 + ∑   

   k [g
(k)

]                       

                        (17) 

 

In which [t] = member Tangent Stiffness 

Matrix in local coordinates defined by: 

 
                                   

 

 

Where: 

 
The prime superscript on Ci or bi denotes a 

differentiation with respect to q. 

      The geometric matrices, [g
(k)

] are given 

by
(1)

: 

 
 

(a) Member forces in global 

coordinates. 

 

    

 
 

(b) Member forces in member 

coordinates. 

 
 

(c) Member forces and relative 

member deformations. 

Figure (3) Element member 

forces. 



In which; 

 
The prime superscript on Ci or bi denotes a 

differentiation with respect to q. 

The geometric matrices, [g
(k)

] are given by : 

[g
(1)

] = [g
(2)

] 

 
 

and: 

 

 
 

3-Dynamic Analysis 
      In extending the method of Beam-Column 

approach to the dynamic case, the masses are 

assumed to be lumped at the joints only. 

      The numerical step-by-step integration 

technique has been used for solving the 

equation of motion. This technique is the only 

generally applicable method for analysis of 

arbitrary non-linear system. In addition, the 

technique lends itself to the solution of the 

base-motion response problem because of the 

incremental nature of the behavior associated 

with time dependant dynamic stresses. Within 

a given time step, the acceleration is assumed 

to be varied linearly. The deterioration of the 

stiffness leads to an increase in deformation, 

leading to the development of large secondary 

forces due to geometric non-linearities, and in 

many cases leading to instability and failure. 

According to that; effects excessive 

deformation have been introduced as P-Δ 

effect. 

      The dynamic equation of motion of the 

system is: 

[M] ( ̈) +[C] ( ̇) + [K](y) = {f(t)}                     

                        (25) 

 

Where [M], [C], and [K] are mass, damping, 

and stiffness matrices respectively, of order 

(n*n). (y) is the displacement vector, ( ̇) is the 

velocity vector, i.e; the first derivative of (y) 

with respect to time (t), and, ( ̈) is the vector of 

accelerations, i.e; the second derivative of (y) 

with respect to time (t). {f(t)} is the matrix of 

applied transient loads vector, n is the total 

DoF of the structure. 

 

4- Modeling of Earthquakes 
      In the present investigation, earthquake 

was represented by substituting the term "F(t)" 

by term "m  ̈ (ti) + F(ti)" at initial time of 

earthquake (ti). then, theses internal forces and 

displacements at time (ti) and " m  ̈ (ti+1) 

+F(ti+1)" at time (ti+1), and so on to the end of 

earthquake to get the final forces and 

displacements. 

 

5- Computational Techniques 
      To make the analysis of non-linear 

problems of structures more easier; two static 

computational techniques were used in the 

present investigation. They are: 

1- Linear incremental method. 

2- Non-linear incremental method. 

      Also; a dynamic computational technique 

was used in solving these non-linear problems 

which is called "The Newmark Method". 

 (i)Linear Incremental Method (LIM): 

      In this method, figure(4), the load is 

applied as a series of small increments and for 

each of these increments, the change in 

deformation is determined using a linear 

analysis. A so called tangent stiffness matrix, 

based on geometry and internal forces existing 

at the beginning of any step (beginning of load 

increment) is constructed. The total 

displacements and internal forces existing at 

the end of any step are obtained by summing 

the incremental changes in displacements and 

internal forces up to that point. 



      At the end of the n
th

 increment, the total 

applied load is given by: 

{P} = ∑     
    I                                                 

                          (26) 

Where (P)I is the i
th

 applied load increment 

vector. 

      Similarly, the displacements at the end of 

the n
th

 increment are: 

{X}n= ∑     
   I                                                  

                          (27) 

 

      The tangent stiffness for the i
th

 increment is 

formed for the conditions existing at the end of 

the previous (i-1)
th

 increment. The linearised 

simultaneous equations to be solved in each 

increment is given by: 

[τ]i-1{ΔX}I = {ΔP}i                                                                     

                                   (28) 

In which; 

[τ]i-1 = [ τ ( {F}i-1 , {X}i-1) ]                                

                        (29)      

    

{F}i-1 is the vector of element nodal forces at 

the end of non-linear analysis in terms of  

internal forces of the members and the updated 

configurations of the structure from the 

previous load increment. However,  a more 

elaborate method is used here in which the 

axial force in the members is extrapolated 

within the load interval according to the load 

increment value in order to predict a closer 

estimate for particular load increment. This 

method may be defined to be the procedure 

obtained from Newton-Raphson method but 

without any iteration. 

 

(ii) Non-Linear Incremental Method (NLIM): 

      This method is similar to (LIM) in both 

applying load in small increments and then 

calculating the change in displacement caused 

by each load increment. The difference 

between the two methods is in the way of 

determining incremental displacement. The 

(LIM) employs a TSM based on internal forces 

and deformations existing at the beginning of 

the load step. A single calculation suffices to 

give the incremental displacement for that load 

step. By comparison, the NLIM is an iterative 

technique. For any desired load level, an 

approximate solution is assumed first, then an 

improved step-by-step via  N-R type of 

iteration until joint equilibrium  equations { fi 

(x1, x2, x3,….xn) = pi, for i= 1, 2, 3, ….n is 

satisfied within a prescribed tolerance. 

     The manner in which each of the two 

incremental methods approximated the acual 

load-deformation curve is shown in Figure (4) 

and Figure (5). 

       It is shown that for LIM, numerical 

solution tends to drift away from the exact 

solution. This method requires smaller load 

increments than those needed when using 

NLIM. 

 

 
Figure (4) Linear incremental method 

 

 
Figure (5) Non-linear incremental method 

 

(iii) The Newmark Method 

      This method is the most widely used 

among the family of implicit methods of direct 

time integration for solving semi-discrete 

equations of motion. The Newmark method is 

based on the following assumptions; 

 ̇t+Δt=  ̇t + Δt [(1-ɣ)  ̈t + ɣ  ̈t+Δt]                         

                           (30) 

And; 

Yt+Δt= Yt + Δt  ̇t + (Δt)
2
 [ (

 

 
 β)  ̈t + b  ̇t+Δt ]      

                            (31) 

 

Where β and ɣ are constants, and they 

determine the stability and accuracy of the 

algorithm. For non-linear acceleration method 

(ɣ= 1/2) and (β=1/4). In addition to equations 

(30) and (31), for solutions of displacements, 



velocity and accelerations at time (t+Δt), the 

equilibrium equations of motion are also 

considered at time (t+Δt). 

M ̈t+Δt + C ̇t+Δt + KYt+Δt = Ft+Δt                          

                            (32) 

 

      Solving equation (31) for  ̈t+Δt in terms of 

Yt+Δt and then substituting for  ̈t+Δt in equation 

(30), we obtain equations for  ̈t+Δt and  ̇t+Δt 

each in terms of the unknown displacements 

Yt+Δt only. Substituting these two expressions 

 ̈t+Δt and  ̇t+Δt into equation (32) gives a system 

of simultaneous equations which can be solved 

for Yt+Δt: 

[K + 
ɣ

βΔ 
 C + 

 

β Δ   
 - M] Yt+Δt = Ft+Δt + C { 

ɣ

βΔ 
 

Yt +( 
ɣ

β
 -1)  ̇t + Δt (

ɣ

 β
-1)  ̈t } -  M

 

β Δ   
 - Yt + 

 

βΔ 
  ̇t + ( 

 

 β
 - 1)  ̈t}….                                        

                            (33) 

  

     The matrix [ K + (ɣ/bΔt)C + (1/b(Δt)
2
M] in 

equation (33) is usually referred to as the " 

effect stiffness matrix ". 

   

Frame Configuration and 

Loadings 
      A brief description of fifteen steel frames 

which are subjected to seismic loads and 

analyzed using the computer program 

(NEABF) which is programmed by the 

authors. These frames are divided into three 

groups according to its number of bays. 

 

1- Frame Configuration 
      In order to insure the greatest utility of 

results, it was decided to limit the range of 

building dimensions to include building sizes 

most likely to be encountered  in current 

particle. 

      The range of building height ranges from 

(1) to (10) stories at (3.46m) per story and 

building width at (4.0 – 6.0 m) per bay. All 

frames were spaced at (7.25m) centers in plane 

and all column bases were considered fixed. 

      To this end, it was decided to design fifteen 

steel frames with some of them having a single 

bay or double bays while others are with three 

bays. 

      Table (1) lists the dimensions of the 

building frames used in this study. 

      Figures (6) and (7) show the configurations 

of the steel building frames used. 

 

Table (1): The dimensions of the building 

frames used in this study 

 

Width 

of 

Bay 

(m) 

Height 

of 

Story 

(m) 

No. 

of 

Bays 

No. of 

Stories 

Frame 

No. 

4.0 3.46 1 1 FR 1 

4.0 3.46 1 2 FR 2 

4.5 3.46 1 3 FR 3 

5.0 3.46 1 5 FR 4 

6.0 3.46 1 10 FR 5 

4.0 3.46 2 1 FR 6 

4.0 3.46 2 2 FR 7 

4.5 3.46 2 3 FR 8 

5.0 3.46 2 5 FR 9 

6.0 3.46 2 10 FR 10 

4.0 3.46 3 1 FR 11 

4.0 3.46 3 2 FR 12 

4.5 3.46 3 3 FR 13 

5.0 3.46 3 5 FR 14 

6.0 3.46 3 10 FR 15 

 

 

 



 
Figure (6) Configuration of steel building 

frames (single and double bay frames) 

 

2- Loads 
      All frames were subjected to identical 

loading conditions and seismic loads. The 

design floor dead loads were (35.0 Kn/m); 

design live loads were (17.5 Kn/m); exterior 

wall loads were (6.0 Kn/m) which contribute a 

total of (50.0 Kn) to each exterior wall at each 

floor level; and design wind loads were (12.0 

Kn/m). 

      A load combination factor of (.75) was 

applied to the combination of gravity and wind 

loads, which is consistent with the AISC 

specifications. 

 

 

 

 
Figure ( 7) Configuration of steel building 

frames (triple-bay frames) 

 

3- Analysis and Design of 

Frames 

 
      The frames listed in Table (1) were 

analyzed using first order elastic analysis 

subjected to seismic loads. Based on results 

from the analysis; the members of the frames 

were designed by selecting the appropriate 

wide flange shapes. 

      It should be noted that the steel frames 

mentioned above were designed using the 

ready computer STAAD III. 

      All frames have the same yield stress of 

220.0 MPa (32.4Ksi) and a modulus of 

elasticity of 20*10
6
 MPa. 

 

Parametric Studies 
      A number of chosen parameters are studied 

in this section. 

1- Effect of large displacements 

on the behavior of steel frames 

subjected to seismic loads: 
             The effect of change of geometry of 

structure (second-order geometrical effects) on 



the behavior of steel frames which are 

subjected to seismic loads is investigated. 

      It should be mentioned that the term "large 

displacement" means that non-linear 

equilibrium equations must be written for the 

deformed configuration of the structure during 

loading process. 

      To this purpose, different steel frames were 

analyzed, by computer with and without 

considering the non-linearity. 

       The results of the analysis of the two types 

are shown in Figure(8). It may be noted from 

the figure shown that the horizontal 

displacement increases as the effect of large 

displacements is included in the analysis. 

     Figure(9) shows the effect of large 

displacements on the percentage of reduction 

in collapse load for the nine steel frames. It 

may be concluded that large displacement 

effects tends to reduce the collapse load of 

steel frames in the order of (4-40)% depending 

upon the number of stories of the frame being 

analyzed. This can be attributed to the 

structural (P-Δ) and member (P-δ) effects and 

also because of the other second-order 

geometrical effects. All these effects tend to 

decrease the stiffness of the system tangent 

stiffness matrix, and thus reduce the ultimate 

strength of the frame. 

 

2- Effect of Number of stories 

and number of bays: 
       The effect of number of stories and 

number of bays on the fundamental period of 

structures which are a function of many 

parameters is presented in this section. All 

fifteen frames have been analyzed with 

considering fixed end conditions. The results 

are shown in Figure(10). From the figure, it 

can be concluded that the fundamental period 

increase with increasing the number of stories 

and number of bays. 

      Figure (11) shows the effects of number of 

stories and number of bays on the horizontal 

displacements. It can be observed that the 

horizontal displacements increase with 

increasing the number of stories, and decrease 

with increasing the number of bays. 

 

3-Effect of time step size: 

      In this section, the influence of the time 

step size on stability and accuracy of the 

solution is presented. For that, a series of tests 

were made using various time step intervals 

(0.0001, 0.00025, 0.005 and 0.001 seconds). 

These time step intervals were chosen to give 

reasonable practical range of stepping. The 

influence of the time size on the horizontal 

displacements of the frame is shown in Figure 

(12), and the effect of the time step size on the 

axial force of the frame is shown in Figure 

(13). These two figures show that the time step 

size has a significant effect on the solution. 

      From the figures, it can be concluded that 

the smaller the time step the stable and closer 

the results, and using time step equal to (0.001) 

gives both economical and accurate resultsand 

decreasing time step bellow this value may not 

lead to significant or justified increased in 

accuracy. 

 

4-Effect of static loads: 
      Static loads are almost associated with 

mass, which placed on or in the building. This 

additional mass can be beneficial to the 

structure subjected to earthquake loading, 

because it increases the inertial which opposes 

the motion of the structure. The effects of 

static loads are included by computing the 

static displacements as initial displacements 

for the transient solution and by applying both 

static and dynamic loads during the transient 

solution. It can be seen from figure (14) that 

including the static force in the analysis has 

negligible effects. Static loads are often 

ignored on earthquake resistant structures 

because they are usually small relative to the 

loads produced by an earthquake.       

5-Effect of subgrade reaction 

(Ka): 
      The effect of subgrade reaction on the 

displacements and forces of the super-structure 

was investigated by considering different 

values of subgrade reaction as (4KN/m
2
), 

(10MN/m
2
), (100MN/m

2
) and rigid support 

(i.e., K=∞). The influence of subgrade reaction 

on the horizontal displacements of the structure 

is shown in Figure (15). These results indicate 

that the values of the horizontal displacements 

decrease when the subgrade reaction's value 

increases. 



 

6-Effect of Earthquake 

duration: 
      In this section, the effect of earthquake 

duration on the behavior of the structures is 

presented. The results are shown in Figure (16) 

three durations are considered in the analysis 

of different frames, it may be concluded that 

the earthquake duration has a small effect on 

the behavior of the structure, especially, with 

earthquakes which have long durations. 

 

Conclusions 
      Based on the results obtained in the present 

paper, several conclusions may be drawn. 

These may be summarized as follows: 

1- This investigation shows that large 

displacement in elastic behavior of plane steel 

frames         subjected to earthquake can be 

accurately predicted using the beam-column 

approach. 

2-Considering the large displacements in the 

analysis decreases the ultimate strength of the  

       structure by a percentage of about (10%). 

3-The fundamental period increases with 

increasing number of stories and number of 

bays,        and increasing number of stories 

tends to increase the horizontal displacement, 

while the         fundamental period decreases as 

the number of bays increase. 

4-The influence of existing static loads during 

the analysis of steel frame structures subjected 

   to seismic forces is small during the 

earthquake duration. 

5-table and accurate results in the dynamic 

analysis are affected by the selection of the 

time       step size. 

6-The dynamic response of steel frame 

structure is substantially affected by the values 

of           sub-grade reaction. 

 

     

 
Figure (8) Effect of large displacements on 

load-deflection behavior for the steel frames 

(FR11,FR13,FR14) 

 

 

 

 

 

 

 
Figure (9) Effect of large displacements on (%) 

reduction in collapse load for fifteen steel 

frames 



 
 

Figure (10) Effect of number of stories on the 

fundamental period of different number of 

bays 

 

 
 

Figure (11) Effect of number of stories on the 

horizontal displacement of different number of 

bays 

 
Figure (12) Effect of time step on the 

horizontal displacement of the frames 

 

 
Figure (13) Effect of time step on the axial 

force of the frames 

 
 

Figure (14) Effect of static loads on the 

horizontal displacements of the frames 

 
 

Figure (15) Effect of sub-grade reaction (Ks) 

on the horizontal displacement of the frames 



 
Figure (16) Effect of earthquake duration on 

the horizontal displacement of the frames 
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