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ABSTRACT 

Efficient heat removal systems are a prerequisite for the safe and satisfactory operation of a satellite. 

Application of fins such as in space radiating fins represents an important part of the satellite thermal 

control system. Consideration of constant thermo-physical properties, such as thermal conductivity, 

may be helpful for the evaluation of fin’s temperature distribution. However, a temperature dependent 

thermal conductivity is considered presently for when there is a large temperature difference. The 

finite volume method is employed to simulate numerically the temperature distribution in a space 

radiating fin. The present results are compared with those of two other analytical methods and good 

agreement is shown. 
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1. INTRODUCTION  

Satellites are playing an increasingly important role in the quality of human’s life. Every Satellite has 

different subsystems which control its performance. One of these subsystems is the thermal control 

unit devised to lose the generating heat that is produced in other sections, particularly, in the electronic 

subsystem. Considering the space medium, the heat transfer modes are solely conduction and thermal 

radiation. The main role in the satellite heat transfer is carried out by radiation. Usually, space 

radiating fins are used for performing the heat loss by radiation. One of the main objectives of a 

thermal design is to maintain the temperature of a heat dissipating component at or below a specified 

value. 

  The majority of works reported on space radiating fins, including references [1] - [4], is on the basis 

of the constant thermal conductivity of the fin material. Bartas and Sellers [1] have studied a heat 

rejecting system consisting of parallel tubes joined by web plates that serve or served (because of 
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joined) as extended surfaces. Stockman et al. [2] have compared one-dimensional and two-

dimensional analyses in the central fin-tube radiators and have shown good agreement between one-

dimensional and two-dimensional analyses. Cockfield [3] has discussed the role of the radiator as a 

structural element in the spacecraft applications. Naumann [4] has investigated 

analytically/numerically the thermal design of heat pipe/fin type space radiators for the case of 

uniformly tapered fins as well as for flat fins with constant thermal conductivity assumption. Whereas, 

the temperature difference between the fin base and its tip is very high in the actual situation. Hence, 

the variation of material’s thermal conductivity should be taken into consideration.  

Arslanturk [5] has evaluated the temperature distribution along a radiating fin by the analytical ADM1

method. He has assumed a temperature dependent thermal conductivity of fin material and compared 

his results with those of Naumann [4] and the agreement is shown to be satisfactory. The Adomian 

decomposition method provides an analytical solution in terms of an infinite power series. Also, 

Hosseini and Ghanbarpour [6] have applied the HPM2 method for a variable thermal conductivity, 

displaying their results to be in good agreement with those of reference [5]. The HPM is a new method 

to solve a non-linear differential equation analytically and it is on the basis of the perturbation 

technique. 

The present heat transfer analysis of a space radiating fin is carried out numerically by developing a 

computer code which is based on the finite volume method [7]. The governing equation for the one-

dimensional configuration is the energy equation encompassing the conduction and thermal radiation 

modes, under the steady-state condition. The thermal conductivity of fin material is assumed as a 

linear function of temperature. Also, all radiating surfaces are considered as diffuse and gray. The 

contact resistance is regarded as negligible. The results on the temperature distribution are obtained for 

different geometric and thermal variables. 

2. PROBLEM DEFINITION 

The configuration of present radiating fin is shown in Fig. 1. It is based on an optimized shape 

provided by Naumann [4] and Arslanturk [5]. The fin material is considered as Aluminum (Al) It is 

assumed that the fin has a length, w  and thickness, D  connected to a tube at its base which acts as a 

heat pipe. All of the geometrical parameters are measured in meter. The fin base at 0�x  is held at 

constant temperature, bT  and both side surfaces of fin can radiate to outer vacuum space, which is 

considered at absolute zero temperature. There are no gradients across the thickness of fin and no 

significant radiation from the edges, because the thickness is assumed to be thin enough.  

1 Adomian  Decomposition Method 
2 Homotopy Perturbation Method 
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Fig.1. Fin configuration 

Also, it is presumed that the fin has diffuse and gray surfaces with a constant emissivity � �� . Radiation 

exchange between surfaces of pipe and fin is negligible. Assuming wD �� , the problem is solved as 

one-dimensional heat flow (in the x direction). The governing energy equation is as follows: 

� � � �42 xT
dx
dTTk

dx
dD ����	



��

                                                                                                            (1) 

where, � �KT  is temperature, �  is Stefan-Boltzmann constant and � �KmWk .  is the thermal 

conductivity of fin material which is assumed to depend on the temperature linearly [5]: 

� � � �� �bb TTkTk ��� �1                                                                                                                        (2) 

where, bk  is thermal conductivity at fin base and � �K1�  is slope of temperature-conductivity curve. 

The boundary conditions for the present fin geometry are defined as in equation (3):   

0

0

��

��

xatTT

wxat
dx
dT

b

                                                                                                                    (3) 

3. NUMERICAL DETAILS 

The present problem is aimed at the prediction of temperature distribution in an extended surface 

while combined conduction-radiation heat transfer is taking place. One-dimensional conduction across 

the fin and radiation heat loss from side surfaces are taken into account. The governing equation for 

the present computation is considered as follows [7]: 

0���
�
�

�
�
� S

dx
dTk

dx
d

                                                                                                                               (4) 

where, S  is radiation heat loss that has a negative sign. The discretization procedure, based on the 

finite volume technique [7], is carried out on the above equation to solve the problem numerically. 
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To derive the discretization equation, the grid point cluster shown in Fig. 2 is employed. The main 

point is P, where the temperature is to be determined. This grid point has the grid points E and W as its 

east and west neighbors, respectively. The narrow line shows the face of the control volume while 

letters e and w denote these faces. For the one-dimensional problem under consideration, the thickness 

in the y and z direction is assumed as unity. The grid points are distributed in x-direction uniformly.  

Fig.2 Grid point cluster for the one-dimensional problem  

Hence, equation (5) is resulted from the integration of equation (4): 

0���
�
�
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���

�
�

�
�
� �

e

w
we

Sdx
dx
dTk

dx
dTk                                                                                                         (5) 

The derivatives of dxdT   in equation (5) are evaluated from piecewise linear profile. Then, the 

resulting equation is as follows: 

� �
� �

� �
� � 0���
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                                                                                                (6) 

where, S is the average value of S over the control volume. It is useful to cast the discretization 

equation (6) into the following form: 

� � bTaTaTa WWEEPP ���                                                                                                                   (7) 

where,  
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4. TREATMENT OF RADIATION HEAT LOSS TERM 

The treatment of radiation heat loss term is considered in equation (4). As shown in equation (1), this 

term is a function of the dependent variable T itself and it is then desirable to acknowledge this 

dependence in constructing the discretization equation.  

The discretization equation is solved by the technique for linear algebraic equations and only a linear 

dependence can be accountable. 

The average value S is expressed as:  

PPC TSSS ��                                                                                                                                      (9) 

where, CS  stands for the constant part of S , while PS is the coefficient of  PT . With the linearized 

heat loss expression, the discretization equation would still look like Eq. (7), but the two coefficient 

definitions in equation (8) would change. The new definitions for those two are expressed as: 

xSb
xSaaa

C

PEWP

��
����

                                                                                                                        (10) 

The comparison between equations (1) and (4) shows that S is the function of 4T . Thus, the heat loss 

term is linearized by replacing 4T by � � � � � �*3*4* 4 TTTT ��  wherever it appears. Here, the 

superscript, *, refers to a previous iteration value. This technique of linearization is on the basis of the 

Taylor series [7]. 

To solve the set of matrices from equations (7) to (10), TDMA3 technique [7] is used. 

5. RESULTS AND DISCUSSION 

In the present work, the temperature distribution on a set of heat pipe for the temperature dependent 

thermal conductivity of fin material is evaluated. The present results are compared with those of 

Naumann [4] and Arslanturk [5]. 

For more precise and also simpler analysis, some dimensionless parameters are defined as follows: 

b
b

b

T
w
x

kD
Tw

T
T ������� ����

322
                                                            (11) 

where, �  is dimensionless temperature, �  is a thermo-geometric parameter, �  is dimensionless 

length, and �  is a dimensionless coefficient for thermal conductivity function. The dimensionless 

thermo-geometric parameter �  is a function of some thermal, optical and geometrical properties. In 

this paper �  is varied by length � �w  and other parameters are constant.  

                                                
3 Tri Diagonal-Matrix Algorithm  
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The present predictions on the dimensionless fin temperature distribution in the axial direction (i.e., fin 

length, x) are depicted by Fig. 3, for constant thermal conductivity � �0�� . The fin base temperature 

and the other variables are assumed as: mwKmWkKT bb 04952.0,85.0,.257,700 ���� �

It can be seen that the temperature decreases as the fin length increases. Also, the present numerical 

results are directly compared with those available by Naumann [4] and good agreement is shown.  

Fig.3 Dimensionless fin temperature distribution for constant thermal conductivity � �0��

Fig. 4 represents the dimensionless temperature distribution at a fixed thermo-geometric parameter, 

� , and for different �  in the range 0.0-0.6. It is observed that as �  is increased from 0.0 toward 0.6 

the temperature difference between the fin base and its tip is decreased and consequently the fin can 

radiate to outer space with an overally higher temperature. This may lead to an increase in the fin 

overall efficiency.    The values of conductivity of Al at KT 100� and KT 1000� can be taken from 

the literature [8] as KmWk .300� and KmWk .200� , respectively. Assuming that the minimum 

temperature within the fin, i.e., tip temperature, is K100 , and employing equations (2) and (11) can be 

found that the thermal conductivity parameter can be found as 55.0��w for the case of variable 

conductivity. The average conductivity at the same temperature range is KmWk .250� .
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Fig.4 Dimensionless temperature distribution for different�  at fixed 1��

Fig. 5 demonstrates the distribution of fin temperature for different negative values of � in the range -

0.4 to 0.0, at fixed 1�� . The results for negative values of �  are in line with those for positive�  in 

Fig. 4.  That is, as �  is increased from -0.4 toward 0.0 the temperature difference between the base 

and tip is decreased.  

Fig.5 Dimensionless temperature distribution for different negative �  at fixed 1��



The 7th Jordanian International Mechanical Engineering Conference (JIMEC’7)  
27 - 29 September 2010, Amman – Jordan 

The present dimensionless fin tip temperature predictions (i.e., at x=w) for different� , at 

constant 1�� , are depicted in Table 1. They are compared with the two recently available analytical 

solutions of Arslanturk [5] and Hosseini and Ghanbarpour [6]. The percentage of deviation is less than 

5% in all cases. Hence, it can be concluded that the present numerical computations are in good 

agreement with the works of others. 

Table1. Dimensionless tip temperature at 1��

Method 4.0��� 2.0��� 0�� 2.0�� 4.0�� 6.0��

Present work 0.714776 0.755708 0.775102 0.796743 0.813942 0.822373 

Reference [5] 0.713201 0.754132 0.779145 0.797712 0.813369 0.82675 

Reference [6] 0.712155 0.756802 0.775333 0.797809 0.813236 0.825052 

As mentioned before, the thermo-geometric parameter,� , is an important parameter and its influence 

on the fin axial temperature distribution, at fixed 1�� , is displayed in Fig.6. It is observed that as �

is increased from 1 to 10, the fin tip temperature and hence overall temperature along the fin length are 

decreased significantly.   

Fig.6 Dimensionless temperature distribution for different� , at fixed 1��
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6. CONCLUSIONS 

In the present work, the heat pipe-fin configuration concerning a space radiating fin with the 

temperature dependent thermal conductivity of the fin material is investigated numerically. The 

nonlinear governing equation is solved by the finite volume method. Also, the linearization technique 

is used for the radiation heat loss term. The temperature distribution along a radiating fin is predicted 

for different geometric and thermal parameters. The main conclusions may be drawn as follows: 

 For a constant thermo-geometrical parameter,�  the fin tip temperature is increased while the 

dimensionless coefficient for thermal conductivity �  is increased in the range -0.4 to 0.6. 

 Fin tip temperature decreases if �  increases from 1 to 10, at constant � .

 Dimensionless tip temperature predictions are compared with two other analytical solutions 

displaying good agreement with one another. 
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