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ABSTRACT

In this paper, a Bernoulli – Euler beam fixed on a moving cart and carrying a lumped tip mass is 

considered. The equations of motion which describe the global motion as well as the vibrational 

motion were derived using the extended Hamilton’s principle. The obtained equations of motion are 

analyzed by means of the unconstrained modal analysis. In order to eliminate the need of sensor 

placement at the tip of the cantilever beam, as most of the practical control implementations require 

that sensors and actuators to be placed in accessible locations, the Linear Quadratic Estimator (LQE) 

approach was utilized to estimate the vibrations of any point on the span of the elastic cantilever beam 

in the presence of process and measurement noises. For the purpose of suppressing the vibrations at 

the tip of the beam, an active optimal controller was designed based on the Linear Quadratic Gaussian 

(LQG) method. Numerical simulation results demonstrated the capability of the developed optimal 

controller in eliminating the vibrations at the tip of the beam as well as to improve the positioning 

accuracy.

Keywords: Unconstrained modal analysis, Linear quadratic estimator, Linear quadratic Gaussian.

1. INTRODUCTION

The beam is considered as one of the fundamental elements of an engineering structure. It finds use in 

varied structural applications. Moreover, structures like forklift vehicles or ladder cars that carry heavy 

loads, military airplane wings with storage loads on their span and antenna operated in the space can 

be modeled as a flexible beam carrying a concentrated mass and being fixed on a moving cart. Due to 

the presence of vibration in such systems, it leads to undesirable effects such as structural and 

mechanical failures, though vibration suppression has been main requirement for their design and safe 

operation. Active control falls among the most feasible techniques for vibration suppression in axially 

moving structures, where passive techniques may become ineffective or impractical. On the other side, 

unconstrained modal analysis is considered as a powerful tool to generate accurate mode shapes of the 
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system, such analysis may provide useful information which may enhance the design of the optimal 

controller. Many studies were reported in the literature concerned of the mathematical modeling of 

similar systems based on the linear formulation. Exact frequency equation of a uniform cantilever 

beam carrying a slender tip mass whose center of gravity didn't coincide with the attachment point has 

been developed by [Bhat and Wanger, 1979]. [To, 1982] calculated the natural frequencies and mode 

shapes of a mast antenna structure, but he modeled it as a cantilever beam with base excitation and tip 

mass because the total mass of the beam-mass system is negligible compared with that to the base. 

[Park et al., 1998] obtained the linear equations of motion, frequency equations and exact solutions of 

the motion of flexible beam fixed on a moving cart and carrying a lumped tip mass using 

unconstrained modal analysis. [Park et al., 2000] considered a Bernoulli-Euler beam fixed on a 

moving cart and carrying a concentrated mass attached at an arbitrary position along the beam, and the 

linear equations of motion which describe the global motion as well as vibrations motion were 

derived. Vibration suppression has been a requirement for the design and operations in many 

engineering structures. Due to the development in the area of control systems, active controllers have 

been implemented in several vibration suppression applications. [Khulief, 2000] has proposed the 

control of a rotating beam mounted on a rigid hub using linear quadratic regulator. [Zimmerman and 

Cudeney, 1989], [Yousfi-Koma and Vukovich, 2000], [Mallory and Miller, 2000], [Lee and Eillott, 

2001], all have also suggested placing sensors at various locations along the span of the beam for 

monitoring and control purposes. [Sinawi and Hamdan, 2003] developed a new approach for 

estimating the vibration of any point on the span of a rotating flexible beam mounted on a compliant 

hub (plant) in the presence of process and measurements noise based on the Linear Quadratic 

Estimator (LQE) technique. At this point one can conclude that an active control law that uses a 

consistent dynamic model and utilizes the linear quadratic regulator in absence of process and 

measurement noise is not fully addressed, in particular when unconstrained modal analysis is utilized

as the modeling tool. In this paper, the equations of motion of a Bernoulli-Euler cantilever beam 

clamped on a moving cart and carrying lumped mass are analyzed by means of the unconstrained 

modal analysis, and a unified characteristic equation for calculating the natural frequencies of the 

system. The natural frequencies obtained from the unconstrained modal analysis are used to develop 

an active modal controller based on Kalman filter estimator and linear quadratic regulator in order to 

reduce the end vibration as well as to improve the positioning accuracy.

2. MODEL FORMULATION

The equations of motion of a Bernoulli-Euler cantilever beam clamped on a moving cart and carrying 

lumped mass on its tip are derived using the extended Hamilton's principle. It should be recognized 
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that the addressed dynamic model is considered to be linear by neglecting the effect of axial 

shortening.

2.1 System Description and Assumptions

Consider the planar motion of the beam-mass-cart system, shown in Fig.1. The elastic beam is 

assumed to follow the Bernoulli-Euler beam model and to be clamped tightly on the moving cart. In 

deriving the equations of motion, it is assumed that the beam material is linearly elastic and undergoes 

small deformation.

2.2 Equations of Motion

The equations of motion and the boundary conditions of the beam-mass-cart system are derived using 

the extended Hamilton's principle. Defining the variation of the functional I, which represents the 

integrand of the Lagrangian function L over the initial and final time instants, to and tf respectively, 

and considering the fact that the variation and integral operators commute, we can write for the 

actual path that:
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nc                                                                                                            (1)

where ncW denotes the work done by non-conservative forces such as external forces and moments.

Referring to the Cartesian coordinates shown in Fig. 1, the beam potential and kinetic energy are given 

by equations (2) and (3) respectively,

 
l

dyu
EI

V
0

2)(
2

                                                                                                            (2)                                                                                                

   22

0

2 )(
2

1

2

1
xM  

2

1
uxlymdyuxT

l

o                                                        (3)

where
M: mass of the cart.

m: lumped mass at the tip of the beam .  

ρ
o: mass per unit length of the beam . 

l: length of the beam .

u(y,t) : lateral deformation of the beam at a distance y measured from the fixed end of the beam 

along the neutral axis in the undeformed configuration and at time t .

EI: The flexural stiffness of the beam.

δ(y-l):   The dirac δ-function. 
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Fig. 1: Schematic of the beam-mass-cart system.

     

Substituting equations (2) and (3) into equation (1), noting that VTL  , and after some 

mathematical manipulations including integration by parts, yields

                         )()(
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o                                                                              (4)

                      0)()(  uxlymuEI o                                                                                   (5)        
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3. MODAL ANALYSIS

In this study, the obtained equations of motion are analyzed utilizing the unconstrained modal analysis 

which admits the presence of the external forcing terms. Assuming that the position of the cart x(t) has 

a solution of the form:

                       )()()( tqttx                                                                                                                   (7)                                                                                                                              

where α(t) describes the motion of the center of mass . Therefore, the motion of the center of the mass 

without perturbation can be expressed as:

           )()( tFtMt                                                                                                                             (8)

where M
t
is the total mass of the beam-mass-cart system such bt mmMM  and m

b
represents 

the mass of the flexible beam such lm ob  .

Also, the deflection of the beam u(y,t) is assumed to have the solution of the form

         )()(),( tqytyu                                                                                                                     (9)

Defining )()( yy   , and substituting equations (7) and (9) into equation (5), one obtains
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To get the normal mode solutions, where the effect of the external forces vanishes, one can 

decompose equation (10) into the following two ordinary differential equations using the principle of

separation of variables 

0)()( 2  tqtq                                                                                                                   (11)

  0)()()( 2  ylymyEI o                                                                           (12)                                                           

where ω is the natural frequency of the beam-mass-cart system. Hence, the boundary conditions 

defined by equation (6) can be rewritten as
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Solving equation (12) using Laplace transforms, and after several mathematical manipulations, one 

can obtain the solution of )(y as 
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where )( lyU  is a unit step function at y=l, and k represents the modal frequency and can be 

expressed as 
EI
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2

4 
 .The constants )0(  and  )0(  can be obtained from the last two 

boundary conditions given by equation (13) as follow
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Thus, from equations (15) and (16) , ψ(y) can be expressed as 
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and
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Integration of equation (5) with respect to y and substituting equation (4) into the resulting equation 

gives 

        )(),0( tFtuEIxM                                                                                                           (20)                                

When F(t) is assigned to be zero, and among substituting equations (7) , (8) and (11) into equation 

(20) yields 
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Utilizing equations (16) and (21), β can be found as
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Finally, equations (17) and (22) lead to 
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3.1 The Frequency Equation

Equation (23), at  y=l, gives the following equation:

           0)()()()(1  lClBDlAlAD                                                                              (24)                                                                                                                            

As   0l yields a trivial solution, the inner part of the bracket in equation (24) must vanish. From 

this condition, and after some mathematical manipulations, the frequency equation can be obtained 

as follows 
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3.2 Beam Deflections

If a function  y is defined as 

               lymy o                                                                                                           (26)

Substituting equations (12) and (26) into equation (10), multiplying both sides of the resulting 

equation by )( yj and integrating over the problem domain, leads to 
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Now, substituting equations (7) and (9) into equation (4) and doing appropriate mathematical 

manipulation, one obtain that β

            
l

j
t

j dyyy
M 0

)()(
1                                                                                                (28)

Substituting equations (8) and (28) into equation (27), for  i = j
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Note that qi (t) can be obtained by integrating equation (27) for given values of ωi and applied force 

F (t). For given ψi(l), βi and qi(t), the beam deflection can be expressed as                                           
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Accordingly, the position of the cart can be expressed as 
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Now, the nonhomogeneous equations (8) and (29) can be transformed into a set of n+1 second-order 

ordinary differential equations of the form 
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Where K represents an nn stiffness matrix such that  2
idiagK  . Equation (32) can be solved 

using the fourth order Runge-Kutta method for an arbitrary given forcing function F(t).

4. DESIGN OF ACTIVE MODAL CONTROLLER 

In this section, the design of an active optimal controller for the vibration suppressing of elastic 

cantilever beam mounted on a moving cart and carrying tip lumped mass is tackled. The elastic beam 

was already modeled in section 3 via the unconstrained modal analysis from which the transient 

response of the tip beam deflection can be obtained as per equation (29). To eliminate the need for 
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sensor placement on the tip of the cantilever beam since most of the practical control implementations 

required that sensors and actuators be placed at certain accessible structural locations, Linear 

Quadratic Estimator (LQE) technique is used for estimating the vibration of any point on the span of 

the flexible cantilever beam mounted on a moving cart and carrying tip lumped mass and subjected to 

process and measurement noises. Linear-quadratic-Gaussian (LQG) control is a modern state-space 

technique for designing optimal dynamic regulators. It enables to trade off regulation performance and 

control effort. Also it takes into account process disturbances and measurement noises. Fig. 2 

illustrates the schematic of the LQG approach. The main goal of this control scheme is to regulate the 

output y around zero. The plant is subjected to disturbances w and is driven by controls u. The 

regulator relies on the noisy measurements vyy  to generate these controls. The plant states and 

measurement equations are expressed as

            BwBuAzz  ,    vDuCzy                                                                           (33)                                          

where A is the plant state matrix , B is the plant input matrix , C is the plant output matrix , D is the 

plant feed forward, and both w and v  are modeled as white noise. The LQG regulator consists of an 

optimal state-feedback gain and a Kalman state estimator. The design of these two components is 

discussed hereafter with more details.

Optimal state feedback gain:  In LQG controller, the regulation performance J is measured by a 

quadratic performance criterion of the form

            



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)()()()( tuRutzQtzuJ TT                                                                                           (34)

The weighting matrices Q and R define the trade-off between regulation performance (how fast goes to 

zero) and control effort. The first design step seeks a state-feedback law xKu  that minimizes the 

cost function J(u) . The minimizing gain matrix K is obtained by solving the associated algebraic 

Riccati equation. 

Kalman Filter Estimator: Kalman filter is an optimal recursive data processing algorithm. One aspect 

of this optimality is that the Kalman filter incorporates all information that can be provided to it such 

as knowledge of the system , measurement device dynamics ,statistical description of the system 

noises , measurement errors, and uncertainty in the dynamic model .Unlike certain data processing

concepts , the Kalman filter doesn't require all previous data to be kept in storage and reprocessed 

every time , but a new measurement is taken each time .Fig. 3 depicts a typical situation in which a 

Kalman filter can be used advantageously . The input disturbances are included in the state space 

model by adding the noise input vector w to the exogenous input vector u. Moreover, to include 

measurement noise, the vector v is added to the output of the system. Such noise signals are usually 



The 7th Jordanian International Mechanical Engineering Conference (JIMEC’7) 
27 - 29 September 2010, Amman – Jordan

part of the actual mode of the system. Up to this end, the LQG regulator can be established by 

combining the Kalman filter and LQ-optimal gain K as shown in Fig. 4.

  

Fig. 2: Schematic of the proposed LQG approach.

Fig. 3: Typical Kalman filter application.

Fig. 4: Schematic flow chart for Linear Quadratic Guassian Regulator.
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5. NUMERICAL SIMULATION

   The main objective of the current numerical study is to examine both open and closed loop responses

after implementing the developed LQG controller. The beam tip deflection was estimated using 

Kalman filter estimator, in the presence of process and measurement noises using Kalman filter 

estimator. Numerical values of the system parameters are selected as shown in table 1.

Table 1: System Parameters

ValueParameters

10.0 kgMass of cart, M
1.0 mLength of elastic beam, L

0.788 kg/mMass per unit length of elastic beam, ρ
o

2.07 x 10
-11

N/m2Young's modulus of elastic beam, E

5.208 x 10
-11

m4Area moment of inertia of elastic beam, I

5.1 Open-loop Response of the beam-mass-cart system

Numerical simulations were carried out to examine the open-loop response of the system, subjected to 

a periodic forcing function, such that )10cos(10)( ttf  . Equation (32) has been solved numerically, 

using ODE 45 solver within MATLAB® software, and numerical solutions were obtained by 

integrating the discretized form of the equations forward in time. The natural frequencies of the system 

have been obtained by solving the frequency equation presented in equation (25) utilizing Newton-

Raphson method, for each mode of vibration. Table 2 show the obtained modal and natural 

frequencies for the first three modes of vibration, in addition to the corresponding values of the 

constants C, D,    ψi (l) and βi which have been evaluated based on their definitions presented in the 

aforementioned modal analysis. Figures 5 show the time responses of both displacement and velocity 

at the tip of the beam for the first three modes of vibration when the system is subjected to the 

sinusoidal force. Referring to  fig. 5, it was found that the most critical mode is the first one, as the 

applied sinusoidal force leads to large deflection of the elastic beam compared with the other modes of 

vibration. This finding is considered reasonable enough to design a controller to suppress the vibration 

for the first dominant mode. It is obvious that the vibration signal appears just like noise at high modes 

of vibration. 

Table 2: The values of the modal and natural frequenc and associated modal the
first three modes of vibration.

First Mode  (i=1)

(k =1.2267, ωn=5.566 rad/s )

Second Mode (i=2)

(k =4.03, ωn=60.073 rad/s)

Third Mode (i=3)

(k =7.132, ωn=188.143 rad/s)

C D ψi(L) βi C D ψi (L) βi C D ψi (L) βi

-0.135 -0.082 0.871 -0.109 0.164 -0.006 0.244 -0.04 -0.1511 -0.003 0.166 -0.025
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Fig. 5: (a) Open-loop response of the local beam deflection at the first mode of vibration when 
)10cos(10)( ttf  . (b) Corresponding phase plane plot. (c) Open-loop response of the local beam 

deflection at the 2nd mode of vibration (d) Corresponding phase plane plot. (e) Open-loop response of 
the local beam deflection at the 3rd  mode of vibratio. (f) Corresponding phase plane plot.
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The phase plane plot shows that there is one equilibrium point for the beam-mass-cart system where 

there is no excitation force and the expected shape of phase plane plot in that case is a center profile. 

On the other hand, the importance of the phase plane plot appears clearly in determining the 

qualitative behavior of the dynamic systems such as stability.

5.2 Estimated beam tip deflection in the presence of process and measurement noises using 

Kalman filter estimator.

In this part, Kalman filter is used to estimate the beam tip deflection in the presence of process 

disturbance w and noise measurements v. In order to illustrate the efficiency of the filtration process, 

the excitation force applied to the system is chosen to be similar to the selected force in the open loop 

analysis. The process disturbance signal w is selected to be a random force of magnitude of 2 N. 

Matlab Simulink model has been developed to represent the Kalman filter estimator in order to predict 

the beam tip deflection in the presence of process and noise measurements. Kalman filter matrix was 

obtained using a simple Matlab algorithm, while the beam-mass-cart system has been defined in its

state space representation. In order to demonstrate the capability of the proposed filtration scheme, the 

estimated beam tip deflection is compared with the corresponding value obtained via the 

unconstrained modal analysis. Fig. 6 shows the capability of the proposed estimator in producing 

fairly accurate tip deflection. Kalman filter was found as powerful tool to eliminate hysteresis obtained 

by process and measurement noises and to purify the output signal.

5.3 Closed-loop response using LQG optimal controller

In order to illustrate the regulator performance, both open and closed responses of the deflection at the  

tip of the beam subjected to the periodic functions were compared as shown in figures 7 and 8 for 

different weighting matrices. Referring to these figures, it was found that the linear quadratic regulator 

is considered as efficient tool to eliminate the vibrations and stabilize the system for various inputs. It 

is important to recognize that the dynamic matrix of the system shows that the system is conditionally 

stable since the roots are pure imaginary while the new eigenvalues for the system after using 

regulator are with negative real parts which assure stability for the system. By examining figures 7 and 

8, we can conclude that the time required to achieve the steady state response can be controlled by by 

increasing the weight of (Q) matrix and/or decreasing the weight matrix ( R)  which has been used in 

LQ regulator .Fig. 8 shows a fast closed loop response which was obtained by decreasing the value of 

the weighting matrix (R). Generally if application requires fast decay of vibration, weighting matrix 

(Q) must be increased while (Q) matrix shall be decreased, and the opposite can be performed if 

reduction of the control effort is required.
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Fig. 6: Estimated beam tip deflection in presence of process and measurement noises using Kalman 
filter estimator versus deflection obtained using unconstrained modal analysis for the first mode of 

vibration.

Fig. 7: Open loop versus closed loop (Regulated) responses for periodic input with weighting 
matrix (R=0.01). 
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Fig. 8: Open loop versus closed loop (Regulated) responses for periodic input after with weighting 
matrix (R=0.001).

6. CONCLUSIONS

In the present work, a Bernoulli – Euler beam fixed on a moving cart and carrying lumped tip mass 

was considered and the equations of motion which describe the global motion as well as the vibration 

motion were derived by means of the extended Hamilton’s principle .A unified frequency equation 

was obtained and the roots of the frequency equation were found for the first three modes of 

vibrations. Exact and assumed-mode solutions were obtained by the unconstrained modal analysis for 

the beam-mass-cart system which emphases the importance of unconstrained modal analysis in 

studying the effect of the axial movement of the cart and achieving accurate mode shapes. In order to 

eliminate the need for sensor placement on the tip of the cantilever beam ,since most of the practical 

control implementations required that sensors and actuators be placed at certain accessible structural 

locations ,a new approach based on the Linear Quadratic Estimator (LQE) technique for estimating the 

vibration of any point on the span of the flexible cantilever beam mounted on a moving cart and 

carrying tip lumped mass and subject to process and measurement noise has been developed.

Numerical simulation results demonstrated the capability of the proposed estimator in producing fairly 

accurate tip deflection. The analytical design of an active optimal scheme for vibration suppression 
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was employed via the Linear Quadratic Regulator (LQR) to obtain the output feedback control gain. 

Closed-loop responses obtained by the proposed technique were compared to the open-loop responses

generated by the unconstrained analysis and the results showed good vibration suppression. 
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