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ABSTRACT 

Since the performance of SPC is known to be seriously deteriorated because of autocorralated 

observations, the detection of an assignable cause is a critical task that most industrial practitioners 

have to deal with. For this reason, selecting the most appropriate control chart to separate a shift 

among autocorrelated observations is a serious problem which needs a thoughtful judgement. In this 

research, two subclasses of ARIMA models, e.g., AR (1) and IMA (1, 1), were deployed to 

characterize autocorrelated processes which were categorized into two cases, stationary and non-

stationary. The simulation was done to assess how each type of control chart responded to a shift in 

the form of average run length (ARL) while the factorial analysis was conducted to quantify the 

impacts of critical factors e.g., AR coefficient (φ), MA coefficient (θ), types of charts and shift sizes 

on the ARL. For non-stationary case, when shift sizes were small (δ=0.5σa), the ARL at θ = +1 was 

significantly higher than the one at θ = -1. However, when the observations were stationary, the above 

result was valid only when an MR chart was utilized. Another significant finding is that the 

exponentially weighted moving average (EWMA) was the most potential control chart to monitor both 

AR (1) and IMA (1, 1) processes since it is sensitive to small and large shift sizes. It is important to 

note that practitioners should fully understand how SPC responds to autocorrelated disturbances with 

deterministic shifts in order to achieve the highest performance. 

 

Keywords: Autoregressive Integrated Moving Average, Exponentially weighted moving average, 

Moving range, Non-stationary, Stationary.  

 

1. INTRODUCTION 

Statistical process control (SPC) is a procedure which focuses on process monitoring and control by 

separating common causes from assignable causes. Common causes are the source of variation that is 

inherent in the process and cannot be eliminated when the process is in statistical control, while 

assignable cause variation is unpredictable but can be easily detected and removed. The traditional 

tools of SPC are Shewhart control charts, which are based on the assumptions that all processes are in-
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control and observations are independent. However, because of the advanced measurement technology 

and shortened sampling interval, the independence of each observation has been violated in many 

scenarios, especially in continuous process industries, e.g., chemical process. The lack of 

independence among each sample always comes in the form of serial correlation, which can be either 

positively or negatively correlated. This behavior of process outputs will significantly downgrade the 

performance of control charts. As a result, the control limits of control charts will be narrower than 

what they should be and might signal false alarms more frequently. The consequence is the 

unnecessary investigation, which consumes a lot of time and money. Therefore, several authors point 

out that the traditional charts fail to control and improve the quality of correlated processes [Zhang, 

1998, Jiang, Tsui and Woodall, 2000 and Loredo, Jearkpaporn and Borror, 2002]. 

 

2. LITERATURE REVIEW 

Deming (1998) stated that the effort to adjust a stable (in-control) process in order to compensate for 

an undesirable disturbance tampered the process and led to more variation, so it was better to leave the 

process alone. Nonetheless, if the process was left uncontrolled, the process output was stationary with 

highly correlated data, or non-stationary due to disturbances. This might cause the process mean to 

wander from the desired target. 

One of the solutions to this problem is the integration of forecasting models with the traditional SPC 

tools, since they have the capability to describe the correlation structure of the data [Loredo, et al., 

2002]. Most authors proposed that the integration between forecasting techniques and SPC can be 

done by predicting the process mean in the future, so the modified charts (model-based control charts) 

can adapt their control limits to the correlation by following the forecasts.  

Wardell, Moskowitz and Plante (1992) suggested that the integration of forecasting methods and the 

SPC was done in the form of model-based control charts because of the ability to keep track of the 

correlation pattern. The model-based control charts were constructed on the idea that almost all 

process data was fitted by the autoregressive moving average (ARIMA) model but, instead of using it 

to filter the data, the normal control limits of Shewhart charts were replaced by the variance of the 

disturbances (based on ARIMA model).  

Another approach (data filtering technique) was based on the idea that the errors from forecasting 

models were monitored by the traditional charts to detect the assignable causes after the residual 

satisfied all the assumptions. Alwan and Roberts (1988) and Montgomery and Mastrangelo (1991) 

recommended that one of the forecasting applications which supported the utilization of control charts 

was data filtering, since the correlation embedded in the observations was removed (filtered) by fitting 
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the appropriate forecasting model to the correlated data. After the proper model was applied to the 

data, the residual from the filtering was highly likely to be identically, independently and normally 

distributed (i.i.d.). As a result, SPC control charts were then used to monitor the residual and to detect 

any outliers, since all the conditions were satisfied. If a shift occurred in the process, there was a shift 

in the mean of the residuals. For example, Lu and Reynolds (1999) utilized an ARIMA model and an 

exponentially weighted moving average (EWMA) chart to monitor the residuals, based on the ARIMA 

model forecast values. 

Autoregressive integrated moving average (ARIMA) model was a stochastic difference equation that 

was frequently utilized to model stochastic disturbances. The general form of ARIMA model was 

shown in equation (1). 

 

                       qtqttptdptdtdtd aaaYYYY −−−−− −−−+Δ++Δ+Δ+=Δ θθφφφμ ... ... 112211            (1) 

 

The order of ARIMA model was normally identified in the form of (p, d, q).  p indicated the order of 

the autoregressive part while d  was for the amount of difference and q for the order of the moving 

average part. Some specific form of ARIMA model was utilized to represent autocorrelated 

disturbances, e.g. autoregressive order one, ARIMA (1, 0, 0) or AR (1) for stationary disturbances 

while integrated moving average, ARIMA (0, 1, 1) or IMA (1, 1) was used to represent non-stationary 

disturbances, as recommended by Montgomery, D.C., Keats, J.B., Runger, G.C. and Messina (1994) 

and Box and Luceno (1997). 

Since there were two implementation techniques (data filtering and model-based control chart) which 

were accepted among authors, several experimental studies were conducted in order to access the 

performance of each approach [Wardell, et al., 1992]. In a study, a set of correlated data was 

numerically simulated by following the ARIMA (1, 1) model, while the step input signal was applied 

to the data periodically in order to represent the special cause (or assignable cause) in the process. The 

performance measurement of this experiment is based on the average run length (ARL) when there 

was a shift (special cause) in the system. Due to the experimental result, the model based control 

charts were sensitive to the small shift sizes when the autoregressive (AR) term was negative and the 

moving average (MA) term was positive. However, when the shift size was large, the implementation 

of the data filtering technique showed that it signaled an out-of-control status much faster than the 

model-based one. According to the comparison, none of these methods were superior over another in 

every situation, but most authors suggested that the model-based control chart might be preferred since 

it was simple to implement.  
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Another critical problem is that most observations had no fixed patterns over a period of time so the 

success of the monitoring also depended on the accuracy of the forecasting. In addition, some 

practitioners might find that the above two techniques were too complicated and difficult to implement 

in real-life situations. For this reason, Jiang et al. (2000) proposed the third approach which was the 

utilization of the classical Shewhart chart by selecting the most appropriate control charts to monitor 

correlated observations directly under different conditions. This initiative was supported by the work 

of English, Lee, Martin and Tilmon (2000) which compared the performance of X  and EWMA charts 

when the processes were autoregressive. 

However, the contribution regarding the use of SPC alone was still limited so the identification of 

suitable control charts for monitoring autocorrelated processes following different types of ARIMA 

models was a widely discussed issue in the literature. As a result, if the performance of the each chart 

under the autocorrelated scenarios is known, practitioners will have guidelines for achieving the 

highest capability when deploying SPC and ARIMA model. 

 

3. SIMULATION MODELS 

In this research, a simulation model comprised the disturbance generator and control charts were 

utilized to quantify the effect of autocorrelation on SPC. The autocorrelation was categorized into two 

cases: stationary and non-stationary disturbances. The stationary disturbances were represented in the 

form of autoregressive order one model, AR (1), while the non-stationary ones were characterized by 

integrated moving average model, IMA (1, 1). The level of autocorrelation was adjusted by controlling 

AR coefficient (φ ) and MA coefficient (θ) while a step function generator was utilized to signify the 

deterministic disturbance. The diagram which depicted the simulation model was shown in Figure 1. 
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Figure 1. Simulation model 
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The moving range (MR) and exponentially weighted moving average (EWMA) charts were 

utilized to monitor the autocorrelated observations Y. The performance of each chart was 

assessed by measuring the average run length (ARL) which indicated the average number of points 

that was plotted on a control chart before an out of control condition was acknowledged. The process 

observation ( ) was represented by 1+tY

 

                                                             )(11 tNTY tt δ++= ++ .                                                  (2) 

 

The source of stationary autocorrelation was characterized by the autoregressive order one, 

AR (1), as follows: 

 

                                                       11 ++ += ttt aNN φ ; -1 < φ < 1,                                            (3) 

 

On the other hand, the integrated moving average model, IMA (1, 1) was utilized to represent 

non-stationary disturbances as follows: 

 

                                                      tttt aaNN θ−=− ++ 11 ; -1 < θ < 1,                                      (4) 

 

where Nt+1, Nt are disturbances at time t+1 and t respectively, at+1, at are random errors at time 

t+1 and t respectively, φ is the autoregressive (AR) parameter and θ is the moving average 

(MA) parameter. 

When a special cause occurred at time t0, a step function of magnitude size δ0 was utilized to 

represent a shift as shown in equation (5). 

 

                                                              ,                                                      (5) 
⎩
⎨
⎧

≥
<

=
00

0

;
;0

)(
tt
tt

t
δ

δ

 

where δ0 is the magnitude of a shift, t0 is the time that a shift occurs. 

The observations were monitored by a Shewhart moving range (MR) chart and an 

exponentially weighted moving average (EWMA) chart. The control limits for a moving 

range chart were  

http://www.micquality.com/six_sigma_glossary/control_charts.htm
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where Y is the process mean and equals , nY
n

t
t /)(

1
∑
=

1−−= tt YYMR , MR is the average of 

moving average, d2 = 1.128 (the moving range of n = 2 observations). 

 

For an EWMA chart, the control limits were expressed as: 
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where μ0 is the average of preliminary data, L is the width of control limits, λ is the weight 

assigned to the observation. The values of L and λ used were recommended by Lucas and 

Saccucci (1990). 

 

4. EXPERIMENTAL PROCEDURES 

An empirical analysis was conducted using an experimental design package, Design Expert® Version 

8.0, to analyze the effect of the input factors on the responses. The analysis of variance (ANOVA) and 

the half-normal plot were utilized to reveal the significant factors and their interactions. The analysis 

was categorized into two cases based on the stationarity of the observations. For stationary case, the 

selected factors to be investigated were AR parameters (φ), shift sizes and types of control charts. The 

response was average run length (ARL). Since the factorial design 2k was used to empirically analyze 

the relationship between input factors and response, φ were set to -1 and 1 for low and high values 

respectively. Additionally, shift sizes of 0.5 σa and 3.5 σa were deployed to represent small and large 

shifts. Two types of control charts, a Shewhart moving range (MR) chart and an exponentially 
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weighted moving average (EWMA) chart, were used in order to monitor processes. In conclusion, 

each factor for stationary case was set to high and low levels as shown in Table 1. 

 

Table 1. Input Factors and Levels (Stationary Case). 

 

 

 

Factor Low High 

A (AR parameter; φ) -1 1 

B (Types of charts) MR EWMA 

C (Shift size) 0.5σa 3.5σa 
 

Similarly, the input factors and their levels for non-stationary processes were shown in Table 2. 

 

Table 2. Input Factors and Levels (Non-stationary Case). 

 

 

 

 

Factor Low High 

A (MA parameter; θ) -1 1 

B (Types of charts) MR EWMA 

C (Shift size) 0.5σa 3.5σa 

Regarding the simulation, each run was composed of 10,000 iterations which have been accomplished 

using Palisade’s @Risk® Version 5.5. The random errors (at) from each period were simulated by 

following normal distribution with zero mean and a constant variance as: . The 

simulation results and the analysis of ARL response for each case were shown in the following 

section. 

),0(~ 2
at Na σ

 

5. EXPERIMENTAL RESULTS 

The results were categorized into two cases as follows: 

5.1 Stationary case; AR (1) 

The design matrix and the experimental results for the stationary case were shown in Table 3. 
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Table 3. ARL Response (Stationary Case). 

Run φ Shift Chart ARL 

1 -1 0.5 MR 46.4278 

2 1 0.5 MR 2.7242 

3 -1 3.5 MR 43.304 

4 1 3.5 MR 1.3198 

5 -1 0.5 EWMA 1.6502 

6 1 0.5 EWMA 1.8863 

7 -1 3.5 EWMA 1.1673 

8 1 3.5 EWMA 1.2164 

 

The half-normal plot (Figure 2) and analysis of variance (ANOVA) in Table 4 showed that type of 

chart (C), AR model coefficients (A) and their interaction (AC) contributed the significant effects on 

the ARL. The experimental results also indicated that EWMA chart was robust to both outliers and the 

correlation structure of the observations because of its low ARLs. The interaction plot AC in Figure. 3 

showed that there was no difference for the ARL when EWMA chart was deployed to monitor 

processes. On the other hand, MR chart was sensitive to the stationary autocorrelation when φ was 

highly negative because the ARL at φ = -1 was significantly higher than the one at φ = +1. This result 

explicitly identified that MR chart was a suitable chart to monitor autocorrelated observations with 

highly positive AR parameter. 
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Figure 2. Half-normal Plot (Stationary Case). 
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Table 4. ANOVA (Stationary Case). 

Source SS Df MS F p-value 

Model 2800.446 3 933.482 601.6436 < 0.0001 

A-φ 911.7005 1 911.7005 587.6051 < 0.0001 

C-Chart 964.8258 1 964.8258 621.8452 < 0.0001 

AC 923.9196 1 923.9196 595.4805 < 0.0001 

Residual 6.206212 4 1.551553   

Total 2806.652 7    
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Figure 3. Interaction Plot (AC). 

 

5.2 Non-stationary case; IMA (1, 1) 

The design matrix for the non-stationary case and the results were shown in Table 5. For non-

stationary case, after the regression equation was constructed, the transformation was required 

to ensure that residuals satisfied the i.i.d conditions.  After applying the natural logarithm 

transformation to the response ARL, the ANOVA and the half-normal plot were utilized to 

reveal the significant factors and their interactions as shown in Figure 4 and Table 6 

respectively. 
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Table 5.  ARL Response (Non-stationary Case). 

Run θ Shift Chart ARL 

1 -1 0.5 MR 2.3325 

2 1 0.5 MR 5.4765 

3 -1 3.5 MR 1.3765 

4 1 3.5 MR 1.3185 

5 -1 0.5 EWMA 1.3589 

6 1 0.5 EWMA 2.8043 

7 -1 3.5 EWMA 1.1572 

8 1 3.5 EWMA 1.0252 
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Figure 4. Half-normal Plot (Non-stationary Case). 

 

Table 6. ANOVA (Non-stationary Case). 

Source SS Df MS F p-value 

Model 2.255698 5 0.45114 158.6599 0.0063 
A-Phi 0.249868 1 0.249868 87.87516 0.0112 
B-Shift 1.215479 1 1.215479 427.4682 0.0023 
C-Chart 0.334041 1 0.334041 117.4778 0.0084 
AB 0.379394 1 0.379394 133.4279 0.0074 
BC 0.076916 1 0.076916 27.05043 0.0350 
Residual 0.005687 2 0.002843   
Total 2.261385 7    
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Figure 5. Interaction Plot (AB) for MR chart. 

 

According to Figure 5, 6, 7 and 8, they revealed that both EWMA and MR chart was sensitive 

to small shift size only when MA parameter (θ) was highly negative. Similar to the results 

from stationary case, EWMA chart should be selected to monitor processes since its ARLs 

were lower than those of MR chart in every scenarios.  
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6. CONCLUSIONS 

This research focused on the performance analysis of a statistical process control system in order to 

quantify the effects of the selected factors on stationary and non-stationary processes. According to the 

analysis, the effects of AR parameter (φ), MA parameters (θ), appropriate types of control charts and 

shift sizes on the ARL were determined. In summary, the resultant analysis was concluded as follows: 

1. When the observations follows AR (1) pattern, shift size does not have any significant effects on the 

ARL. Anyway, the AR coefficient seems to play an important role on the selection of SPC charts. The 

empirical analysis reveals that EWMA is the most suitable control chart to monitor stationary 

processes because of its robustness. However, MR chart can also be utilized in the scenario that φ is 

highly negative. 
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2. When IMA (1, 1) was utilized to characterize the non-stationary processes and θ was highly 

negative, both EWMA and MR chart was sensitive to small shift size. 

3. For both stationary and non-stationary cases, the performance of the SPC to minimize ARL will be 

significantly improved if an EWMA chart is utilized to monitor the observations. 

According to the results, the selection of appropriate control charts will assist practitioners to monitor 

the autocorrelated processes effectively. 
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